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actual2normalized
Transform actual values to normalized values

Syntax
NV = actual2normalized(uElement,AV)
[NV,ndist] = actual2normalized(uElement,AV)

Description
NV = actual2normalized(uElement,AV) transforms the values AV of the uncertain element
uElement into normalized values NV. If AV is the nominal value of uElement, NV is 0. Otherwise, AV
values inside the uncertainty range of uElement map to the unit ball ||NV|| <= 1, and values
outside the uncertainty range map to ||NV|| > 1. The argument AV can contain a single value or an
array of values. NV has the same dimensions as AV.

[NV,ndist] = actual2normalized(uElement,AV) also returns the normalized distance ndist
between the values AV and the nominal value of uElement. This distance is the norm of NV.
Therefore, ndist <= 1 for values inside the uncertainty range of uElement, and ndist > 1 for
values outside the range. If AV is an array of values, then ndist is an array of normalized distances.

The robustness margins computed byrobstab and robgain serve as bounds for the normalized
distances in ndist. For example, if an uncertain system has a stability margin of 1.4, this system is
stable for all uncertain element values whose normalized distance from the nominal is less than 1.4.

Examples

Uncertain Real Parameter with Symmetric Range

For uncertain real parameters whose range is symmetric about their nominal value, the normalized
distance is intuitive, scaling linearly with the numerical difference from the uncertain real
parameter's nominal value.

Create uncertain real parameters with a range that is symmetric about the nominal value, where
each end point is 1 unit from the nominal. Points that lie inside the range are less than 1 unit from the
nominal, while points that lie outside the range are greater than 1 unit from the nominal.

a = ureal('a',3,'range',[1 5]); 
NV = actual2normalized(a,[1 3 5])

NV = 1×3

   -1.0000         0    1.0000

NV = actual2normalized(a,[2 4])

NV = 1×2
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   -0.5000    0.5000

NV = actual2normalized(a,[0 6])

NV = 1×2

   -1.5000    1.5000

Plot the normalized values and normalized distance for several values.

values = linspace(-3,9,250); 
[nv,ndist] = actual2normalized(a,values); 
plot(values,nv,'r.',values,ndist,'b-')

Uncertain Real Parameter with Nonsymmetric Range

Create a nonsymmetric parameter. The end points are 1 normalized unit from nominal, and the
nominal is 0 normalized units from nominal. Moreover, points inside the range are less than 1 unit
from nominal, and points outside the range are greater than 1 unit from nominal. However, the
relationship between the normalized distance and numerical difference is nonlinear.

au = ureal('ua',4,'range',[1 5]); 
NV = actual2normalized(au,[1 4 5])

 actual2normalized
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NV = 1×3

    -1     0     1

NV = actual2normalized(au,[2 4.5])

NV = 1×2

   -0.8000    0.4000

NV = actual2normalized(au,[0 6])

NV = 1×2

   -1.1429    4.0000

Graph the relationship between actual and normalized values. The relationship is very nonlinear.

AV = linspace(-5,6,250);
NV = actual2normalized(au,AV); 

plot(NV,AV,0,au.NominalValue,'ro',-1,au.Range(1),'bo',1,au.Range(2),'bo') 
grid, xlabel('Normalized Values'), ylabel('Actual Values')

The red circle shows the nominal value (normalized value = 0). The blue circles show the values at
the edges of the uncertainty range (normalized values = -1, 1).
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Algorithms
For details on the normalize distance, see “Normalizing Functions for Uncertain Elements”.

See Also
normalized2actual | robstab | robgain | getLimits | uscale

Introduced before R2006a
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aff2pol
Convert affine parameter-dependent models to polytopic models

Syntax
polsys = aff2pol(affsys)

Description
aff2pol derives a polytopic representation polsys of the affine parameter-dependent system

E(p)ẋ = A(p)x + B(p)u  (1-1)

y = C(p)x + D(p)u  (1-2)

where p = (p1,..., pn) is a vector of uncertain or time-varying real parameters taking values in a box or
a polytope. The description affsys of this system should be specified with psys.

The vertex systems of polsys are the instances of “Equation 1-1” and “Equation 1-2” at the vertices
pex of the parameter range, i.e., the SYSTEM matrices

A(pex) + jE(pex) B(pex)
C(pex) D(pex)

for all corners pex of the parameter box or all vertices pex of the polytope of parameter values.

See Also
psys | pvec | uss

Introduced before R2006a
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augw
Plant augmentation for weighted mixed-sensitivity H∞ and H2 loop-shaping design

Syntax
P = augw(G,W1,W2,W3)

Description
P = augw(G,W1,W2,W3) computes a state-space model of an augmented LTI plant P(s) with the
weighting functions W1(s), W2(s), and W3(s) penalizing the error signal, control signal, and output
signal, respectively. P is the augmented plant of the following diagram.

This control structure is used in mixed H∞ synthesis, which lets you design an H∞ controller by
simultaneously shaping the frequency responses for tracking and disturbance rejection, noise
reduction and robustness, and controller effort. For more information, see “Mixed-Sensitivity Loop
Shaping”.

Examples

Create Augmented Plant for H-Infinity Synthesis

Suppose you want to synthesize a stabilizing robust controller for the system of the following
diagram. The controller must also reject disturbances injected at the plant output.

 augw
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The plant, G, is an unstable first-order system.

G = tf(1,[1 -1]);

To set up this problem for hinfsyn, insert a weighting function W1 that captures the disturbance
rejection goal, and another weighting function W3 to enforce robustness. Specify these weighting
functions as the inverses of the desired loop shapes for the sensitivity S and complementary
sensitivity T, respectively. (See “Mixed-Sensitivity Loop Shaping”.)

For this example, choose W1 with:

• Low-frequency gain of 100 (40 dB)
• 0 dB crossover at 0.5 rad/s
• High-frequency gain of 0.25 (–12 dB)

Choose W3 to have the opposite low-frequency and high-frequency gains.

W1 = makeweight(100,[1 0.5],0.25);
W3 = makeweight(0.25,[1 0.5],100);
bodemag(W1,W3)
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For this example, do not specify a W2 (no restriction on control effort). Construct the augmented
plant, P.

P = augw(G,W1,[],W3);

G has one input and one output. The augmented plant has an additional input for the control signal,
and additional outputs for each of the weights.

size(P)

State-space model with 3 outputs, 2 inputs, and 3 states.

The inputs and outputs of P are grouped to keep track of the disturbance and control inputs and the
error and measurement outputs. For example, example the output groups. Group Y1 contains the two
error outputs z, and group Y2 contains the single measurement output.

P.OutputGroup

ans = struct with fields:
    Y1: [1 2]
    Y2: 3

You can now use P for control design. For example, use hinfsyn to design an H∞ optimal controller
that meets the design requirements specified by W1 and W3.

[K,CL,gamma] = hinfsyn(P); 
gamma

 augw
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gamma = 0.9946

Input Arguments
G — Plant
dynamic system model

Plant, specified as a dynamic system model such as a state-space (ss) model. G can be any LTI model.
If G is a generalized state-space model with uncertain or tunable control design blocks, then mixsyn
uses the nominal or current value of those elements.

W1,W2,W3 — Weighting functions
dynamic system model | []

Weighting functions, specified as dynamic system models. Choose the weighting functions W1,W2,W3
to shape the frequency responses for tracking and disturbance rejection, controller effort, and noise
reduction and robustness. Typically:

• For good reference-tracking and disturbance-rejection performance, choose W1 large inside the
control bandwidth to obtain small S.

• For robustness and noise attenuation, choose W3 large outside the control bandwidth to obtain
small T.

• To limit control effort in a particular frequency band, increase the magnitude of W2 in this
frequency band to obtain small KS.

If one of the weights is not needed, set it to []. For instance, if you do not want to restrict control
effort, use W2 = [].

Use makeweight to create weighting functions with the desired gain profiles. For details about
choosing weighting functions, see “Mixed-Sensitivity Loop Shaping”.

If G has NU inputs and NY outputs, then W1,W2,W3 must be either SISO or square systems of size NY,
NU, and NY, respectively.

Because S + T = I, mixsyn cannot make both S and T small (less than 0 dB) in the same frequency
range. Therefore, when you specify weights for loop shaping, there must be a frequency band in
which both W1 and W3 are below 0 dB.

Output Arguments
P — Augmented plant
dynamic system model

Augmented plant, returned as a state-space (ss) model. P can be any LTI model with inputs [w;u] and
outputs [z;y]. augw groups the inputs and outputs of P using the ss properties InputGroup and
OutputGroup such that:

• P.InputGroup has field U1 containing the inputs corresponding to w, and field U2 containing the
inputs corresponding to u.

• P.OutputGroup has field Y1 containing the outputs corresponding to z, and group Y2 containing
the outputs corresponding to e.

1 Functions
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Here, {w;u} and {z;e} are the inputs and outputs of P in the following control system.

Tips
• For H∞ or H2 synthesis, the models G and W1,W2,W3 must be proper. In other words, they must be

bounded as s ∞ (for continuous-time transfer functions) or z ∞ (for discrete-time transfer
functions). Additionally, W1,W2,W3 must be stable. The plant G must be stabilizable and
detectable. Otherwise, the resulting P is not stabilizable by any controller.

Algorithms
augw produces the augmented plant P(s) given by:

P(s) =

W1 −W1G
0 W2
0 W3G
I −G

The partitioning is embedded using P = mktito(P,NY,NU), which sets the P.InputGroup and
P.OutputGroup properties as follows.

[r,c] = size(P);
P.InputGroup  = struct('U1',1:c-NU,'U2',c-NU+1:c);
P.OutputGroup = struct('Y1',1:r-NY,'Y2',r-NY+1:r);

See Also
h2syn | hinfsyn | mixsyn | makeweight

 augw
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Topics
“Mixed-Sensitivity Loop Shaping”

Introduced before R2006a
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balancmr
Balanced model truncation via square root method

Syntax
GRED = balancmr(G)

GRED = balancmr(G,order)

[GRED,redinfo] = balancmr(G,key1,value1,...)

[GRED,redinfo] = balancmr(G,order,key1,value1,...)

Description
balancmr returns a reduced order model GRED of G and a struct array redinfo containing the error
bound of the reduced model and Hankel singular values of the original system.

The error bound is computed based on Hankel singular values of G. For a stable system these values
indicate the respective state energy of the system. Hence, reduced order can be directly determined
by examining the system Hankel singular values, σι.

With only one input argument G, the function will show a Hankel singular value plot of the original
model and prompt for model order number to reduce.

This method guarantees an error bound on the infinity norm of the additive error ∥ G-GRED ∥ ∞ for
well-conditioned model reduced problems [1]:

G− Gred ∞ ≤ 2 ∑
k + 1

n
σi

This table describes input arguments for balancmr.

Argument Description
G LTI model to be reduced. Without any other inputs, balancmr will plot

the Hankel singular values of G and prompt for reduced order
ORDER (Optional) Integer for the desired order of the reduced model, or

optionally a vector packed with desired orders for batch runs

A batch run of a serial of different reduced order models can be generated by specifying order =
x:y, or a vector of positive integers. By default, all the anti-stable part of a system is kept, because
from control stability point of view, getting rid of unstable state(s) is dangerous to model a system.

'MaxError' can be specified in the same fashion as an alternative for 'Order'. In this case,
reduced order will be determined when the sum of the tails of the Hankel singular values reaches the
'MaxError'.

This table lists the input arguments 'key' and its 'value'.

 balancmr
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Argument Value Description
'MaxError' Real number or vector of

different errors
Reduce to achieve H∞ error. When
present, 'MaxError' overrides ORDER
input.

'Weights' {Wout,Win} cell array Optional 1-by-2 cell array of LTI weights
Wout (output) and Win (input). The
weights must be stable, minimum phase
and invertible. When you supply these
weights, balancmr finds the reduced
model that minimizes the Hankel norm of

Wout
−1 G− Gred Win

−1 .

You can use weighting functions to make
the model reduction algorithm focus on
frequency bands of interest. See:

• “Reduction with Focus on Particular
Frequency Band” on page 1-19

• “Model Reduction With Frequency-
Dependent Error Profile” on page 1-
22

As an alternative, you can use balred to
focus model reduction on a particular
frequency band without defining a
weighting function. Using balancmr and
providing your own weighting functions
allows more precise control over the error
profile.

Default weights are both identity.
'Display' 'on'' or 'off' Display Hankel singular plots (default

'off').
'Order' Integer, vector or cell array Order of reduced model. Use only if not

specified as 2nd argument.

This table describes output arguments.

Argument Description
GRED LTI reduced order model. Becomes multidimensional array when input is a serial

of different model order array
REDINFO A STRUCT array with three fields:

• REDINFO.ErrorBound (bound on ∥ G-GRED ∥∞)
• REDINFO.StabSV (Hankel SV of stable part of G)
• REDINFO.UnstabSV (Hankel SV of unstable part of G)

G can be stable or unstable, continuous or discrete.
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Examples

Choose Order of Reduced Model

If you do not specify any target order for the reduced model, balancmr displays the Hankel singular
values of the model and prompts you to choose a reduced-model order.

For this example, use a random 30th-order state-space model.

rng(1234,'twister');     % fix random seed for example repeatability
G = rss(30,5,4);

G1 = balancmr(G)

Please enter the desired order: (>=0)

Examine the Hankel singular value plot.

The plot shows that most of the energy of the system can be captured in a 20th-order approximation.
In the command window, enter 20. balancmr returns G1.

Examine the response of the original and reduced models.

sigma(G,G1)

 balancmr
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The 20th-order approximation matches the dynamics of the original 30th-order model fairly well.

Model Reduction to Specified Order

When you have particular target order or orders in mind, you can use balancmr to reduce a high-
order model to those orders. For this example, use a random 30th-order state-space model.

rng(1234,'twister');     % fix random seed for example repeatability
G = rss(30,5,4);

Use a scalar input argument to reduce the model to a single order. For example, compute a 20th-
order approximation.

[G1,info1] = balancmr(G,20);
sigma(G,G1)

1 Functions
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Use a vector to generate several approximations. The following command returns an array of models
of even orders from 10 to 18.

[G2,info2] = balancmr(G,[10:2:18]);
sigma(G,G2)

 balancmr
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Model Reduction to Specified Maximum Error

Obtain the lowest-order approximation such that the sum of the Hankel singular values of the
truncated states does not exceed a specified value. For this example, use a random 30th-order state-
space model.

rng(1234,'twister');     % fix random seed for example repeatability
G = rss(30,5,4);

Compute two approximate models, one for which the error does not exceed 0.1, and a second for
which the error does not exceed 0.5. To do so, provide these values in an array. balancmr returns an
array of approximate models.

Gr = balancmr(G,'MaxError',[0.1 0.5]);
size(Gr)

2x1 array of state-space models.
Each model has 5 outputs, 4 inputs, and between 24 and 26 states.

Examine the results.

sigma(G,Gr)

1 Functions
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Reduction with Focus on Particular Frequency Band

Reduce a 4th-order system to a second-order approximation with emphasis on the frequency band 10
rad/s - 100 rad/s. Consider the following system.

sys = tf(1,[1 0.5 1]) + tf(100*[1/10 1],[1 10 1000]); 
bode(sys)

 balancmr
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To focus the model-reduction algorithm on the higher-frequency dynamics, specify a function with a
bandpass profile.

s = tf('s'); 
w1 = (s+1)/(s/10+1)/(s/60+1)*(s/600+1); 
bodemag(w1)
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The plot confirms that the weighting function w1 has the desired profile, peaking between 10 rad/s
and 100 rad/s. To perform the reduction, specify the inverse of this profile as the output weight, using
the 'Weights' option of balancmr.

weight = {1/w1,1}; 
wrsys = balancmr(sys,2,'Weights',weight);

Compare the result with a second-order model obtained without the weighting.

rsys = balancmr(sys,2);
bode(sys,rsys,wrsys) 
legend('Original','Unweighted','Weighted')

 balancmr
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The model obtained with the weighting function provides a better match for the dynamics in the
frequency band 10 rad/s - 100 rad/s.

Model Reduction With Frequency-Dependent Error Profile

Use a weighting function to control the frequency dependence of the error between the original and
reduced models.

For this example, load a 48-state SISO model and reduce it to 6th order.

load('balancmrData.mat','bplant')
bplant6 = balancmr(bplant,6);
bode(bplant,bplant6,bplant-bplant6,logspace(0,2,200))
legend('Original','Reduced','Error')
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The error is fairly uniformly distributed in frequency. Create a weighting function that allows for a
larger error at frequencies below 100 rad/s. In this case, use a biproper function that has unit gain at
low frequency, but drops to -40 dB at higher frequencies.

W = tf(0.01*[1 1.4e2 1e4],[1 14 100]); 
bodemag(W,bplant)

 balancmr
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Reduce the model to 6th order again, using this weighting function. Because bplant is a SISO
model, you can use the function as either input or output weight.

bplant6W = balancmr(bplant,6,'Weights',{W,1});
bode(bplant,bplant6W,bplant-bplant6W,logspace(0,2,200))
legend('Original','Reduced w/Weight','Error')
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The error is now larger at low frequencies, with a correspondingly better match at high frequencies
between the original and reduced models.

Algorithms
Given a state space (A,B,C,D) of a system and k, the desired reduced order, the following steps will
produce a similarity transformation to truncate the original state-space system to the kth order
reduced model.

1 Find the SVD of the controllability and observability grammians

P = Up Σp Vp
T

Q = UqΣq Vq
T

2 Find the square root of the grammians (left/right eigenvectors)

Lp = Up Σp
½

Lo = Uq Σq
½

3 Find the SVD of (Lo
TLp)

Lo
T Lp = U Σ VT

4 Then the left and right transformation for the final kth order reduced model is

 balancmr
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SL,BIG = Lo U(:,1:k) Σ(1;k,1:k))–½

SR,BIG = Lp V(:,1:k) Σ(1;k,1:k))–½

5 Finally,

A B
C D

=
SL, BIG

T ASR, BIG SL, BIG
T B

CSR, BIG D

The proof of the square root balance truncation algorithm can be found in [2].

References

[1] Glover, K., “All Optimal Hankel Norm Approximation of Linear Multivariable Systems, and Their
Lµ-error Bounds,“ Int. J. Control, Vol. 39, No. 6, 1984, p. 1145-1193

[2] Safonov, M.G., and R.Y. Chiang, “A Schur Method for Balanced Model Reduction,” IEEE Trans. on
Automat. Contr., Vol. 34, No. 7, July 1989, p. 729-733

See Also
balred | reduce | schurmr | hankelmr | bstmr | ncfmr | hankelsv

Introduced before R2006a
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bilin
Multivariable bilinear transform of frequency (s or z)

Syntax
GT = bilin(G,VERS,METHOD,AUG)

Description
bilin computes the effect on a system of the frequency-variable substitution,

s = αz + δ
γz + β

The variable VERS denotes the transformation direction:

VERS= 1, forward transform (s→z) or (s s).

VERS=-1, reverse transform (z→s) or s s .

This transformation maps lines and circles to circles and lines in the complex plane. People often use
this transformation to do sampled-data control system design [1] or, in general, to do shifting of jω
modes [2], [3], [4].

Bilin computes several state-space bilinear transformations such as backward rectangular, etc.,
based on the METHOD you select

 bilin
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Bilinear Transform Types

Method Type of bilinear transform
'BwdRec' backward rectangular:

s = z − 1
Tz

AUG = T, the sample time.
'FwdRec' forward rectangular:

s = z − 1
T

AUG = T, the sample time.
'S_Tust' shifted Tustin:

s = 2
T

z − 1
z
h + 1

AUG = [T h], is the “shift” coefficient.
'S_ftjw' shifted jω-axis, bilinear pole-shifting, continuous-time to continuous-time:

s =
s + p1

1 + s /p2

AUG = [p2 p1].
'G_Bili' METHOD = 'G_Bili', general bilinear, continuous-time to continuous-time:

s = αs + δ
γs + β

AUG = α β γ δ .

Examples
Tustin Continuous s-Plane to Discrete z-Plane Transforms

Consider the following continuous-time plant (sampled at 20 Hz):

A =
−1 1
0 −2

,  B =
1 0
1 1

,  C =
1 0
0 1

,  D =
0 0
0 0

;  Ts = 0.05

Following is an example of four common “continuous to discrete” bilin transformations for the
sampled plant:

A = [-1 1; 0 -2]; 
B = [1 0; 1 1];  
C = [1 0; 0 1];   
D = [0 0; 0 0]; 
sys = ss(A,B,C,D);                   % ANALOG
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Ts = 0.05;  % sample time
syst = c2d(sys,Ts,'tustin');         % Tustin 
sysp = c2d(sys,Ts,'prewarp',40);     % Pre-warped Tustin 
sysb = bilin(sys,1,'BwdRec',Ts);     % Backward Rectangular
sysf = bilin(sys,1,'FwdRec',Ts);     % Forward Rectangular

Plot the response of the continuous-time plant and the transformed discrete-time plants.

w = logspace(-2,3,50); % frequencies to plot
sigma(sys,syst,sysp,sysb,sysf,w); 
legend('sys','syst','sysp','sysb','sysf','Location','SouthWest')

Bilinear continuous to continuous pole-shifting

Design an H mixed-sensitivity controller for the ACC Benchmark plant

G(s) = 1
s2(s2 + 2)

such that all closed-loop poles lie inside a circle in the left half of the s-plane whose diameter lies on
between points [p1,p2]=[–12,–2]:

p1=-12; p2=-2; s=zpk('s');
G=ss(1/(s^2*(s^2+2)));          % original unshifted plant
Gt=bilin(G,1,'Sft_jw',[p1 p2]); % bilinear pole shifted plant Gt
Kt=mixsyn(Gt,1,[],1);           % bilinear pole shifted controller
K =bilin(Kt,-1,'Sft_jw',[p1 p2]); % final controller K

 bilin
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As shown in the following figure, closed-loop poles are placed in the left circle [p1 p2]. The shifted
plant, which has its non-stable poles shifted to the inside the right circle, is

Gt(s) = 4.765 × 10−5 (s− 12)4

(s− 2)2(s2− 4.274s + 5.918)

'S_ftjw' final closed-loop poles are inside the left [p1,p2] circle

Algorithms
bilin employs the state-space formulae in [3]:

Ab Bb
Cb Db

=
(βA− δI)(αI + γA)−1 αβ− γδ αI − γA −1B

C(αI − γA)−1 D + γC(αI − γA)−1B

References

[1] Franklin, G.F., and J.D. Powell, Digital Control of Dynamics System, Addison-Wesley, 1980.

[2] Safonov, M.G., R.Y. Chiang, and H. Flashner, “H∞ Control Synthesis for a Large Space Structure,”
AIAA J. Guidance, Control and Dynamics, 14, 3, p. 513-520, May/June 1991.

[3] Safonov, M.G., “Imaginary-Axis Zeros in Multivariable H∞ Optimal Control”, in R.F. Curtain
(editor), Modelling, Robustness and Sensitivity Reduction in Control Systems, p. 71-81,
Springer-Varlet, Berlin, 1987.
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[4] Chiang, R.Y., and M.G. Safonov, “H∞ Synthesis using a Bilinear Pole Shifting Transform,” AIAA, J.
Guidance, Control and Dynamics, vol. 15, no. 5, p. 1111-1117, September-October 1992.

See Also
c2d | d2c | sectf

Introduced before R2006a
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bstmr
Balanced stochastic model truncation (BST) via Schur method

Syntax
GRED = bstmr(G)

GRED = bstmr(G,order)

[GRED,redinfo] = bstmr(G,key1,value1,...)

[GRED,redinfo] = bstmr(G,order,key1,value1,...)

Description
bstmr returns a reduced order model GRED of G and a struct array redinfo containing the error
bound of the reduced model and Hankel singular values of the phase matrix of the original system [2].

The error bound is computed based on Hankel singular values of the phase matrix of G. For a stable
system these values indicate the respective state energy of the system. Hence, reduced order can be
directly determined by examining these values.

With only one input argument G, the function will show a Hankel singular value plot of the phase
matrix of G and prompt for model order number to reduce.

This method guarantees an error bound on the infinity norm of the multiplicative ∥ GRED–1(G-GRED)
∥ ∞ or relative error ∥ G-–1(G-GRED) ∥ ∞ for well-conditioned model reduction problems [1]:

G−1(G− Gred) ∞ ≤ ∏
k + 1

n
1 + 2σi( 1 + σi

2 + σi) − 1

This table describes input arguments for bstmr.

Argument Description
G LTI model to be reduced (without any other inputs will plot its Hankel

singular values and prompt for reduced order)
ORDER (Optional) an integer for the desired order of the reduced model, or a

vector of desired orders for batch runs

A batch run of a serial of different reduced order models can be generated by specifying order =
x:y, or a vector of integers. By default, all the anti-stable part of a system is kept, because from
control stability point of view, getting rid of unstable state(s) is dangerous to model a system.

'MaxError' can be specified in the same fashion as an alternative for 'ORDER'. In this case,
reduced order will be determined when the accumulated product of Hankel singular values shown in
the above equation reaches the 'MaxError'.
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Argument Value Description
'MaxError' Real number or vector of

different errors
Reduce to achieve H∞ error.

When present, 'MaxError' overrides ORDER
input.

'Display' 'on' or 'off' Display Hankel singular plots (default 'off').
'Order' Integer, vector or cell

array
Order of reduced model. Use only if not
specified as 2nd argument.

This table describes output arguments.

Argument Description
GRED LTI reduced order model. Become multi-dimension array when input is a

serial of different model order array.
REDINFO A STRUCT array with three fields:

• REDINFO.ErrorBound (bound on ∥G–1(G-GRED) ∥∞)
• REDINFO.StabSV (Hankel SV of stable part of G)
• REDINFO.UnstabSV (Hankel SV of unstable part of G)

G can be stable or unstable, continuous or discrete.

Note bstmr is based on balred.

Examples
Given a continuous or discrete, stable or unstable system, G, the following commands can get a set of
reduced order models based on your selections:

rng(1234,'twister'); 
G = rss(30,5,4);
G.D = zeros(5,4);
[g1, redinfo1] = bstmr(G); % display Hankel SV plot 
                           % and prompt for order (try 15:20)
[g2, redinfo2] = bstmr(G,20); 
[g3, redinfo3] = bstmr(G,[10:2:18]);
[g4, redinfo4] = bstmr(G,'MaxError',[0.01, 0.05]);
for i = 1:4
    figure(i)
    eval(['sigma(G,g' num2str(i) ');']);
end

Algorithms
Given a state space (A,B,C,D) of a system and k, the desired reduced order, the following steps will
produce a similarity transformation to truncate the original state-space system to the kth order
reduced model.

1 Find the controllability grammian P and observability grammian Q of the left spectral factor Φ =
Γ(σ)Γ*(–σ) = Ω*(–σ)Ω(σ) by solving the following Lyapunov and Riccati equations
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AP + PAT + BBT = 0

BW = PCT + BDT

QA + AT Q + (QBW – CT) (–DDT) (QBW – CT)T = 0
2 Find the Schur decomposition for PQ in both ascending and descending order, respectively,

VA
TPQVA =

λ1 ⋯ ⋯
0 ⋯ ⋯
0 0 λn

VD
TPQVD =

λn ⋯ ⋯
0 ⋯ ⋯
0 0 λ1

3 Find the left/right orthonormal eigen-bases of PQ associated with the kth big Hankel singular
values of the all-pass phase matrix (W*(s))–1G(s).

                                      k

VA = [VR, SMALL, VL, BIG
︷ k

]
VD = [VR, BIG

︷
, VL, SMALL]

4 Find the SVD of (VT 
L,BIGVR,BIG) = U Σ ςΤ

5 Form the left/right transformation for the final kth order reduced model

SL,BIG = VL,BIG U Σ(1:k,1:k)–½

SR,BIG = VR,BIG V Σ(1:k,1:k)–½

6 Finally,

A B
C D

=
SL, BIG

T ASR, BIG SL, BIG
T B

CSR, BIG D

The proof of the Schur BST algorithm can be found in [1].

Note The BST model reduction theory requires that the original model D matrix be full rank, for
otherwise the Riccati solver fails. For any problem with strictly proper model, you can shift the jω-
axis via bilin such that BST/REM approximation can be achieved up to a particular frequency range
of interests. Alternatively, you can attach a small but full rank D matrix to the original problem but
remove the D matrix of the reduced order model afterwards. As long as the size of D matrix is
insignificant inside the control bandwidth, the reduced order model should be fairly close to the true
model. By default, the bstmr program will assign a full rank D matrix scaled by 0.001 of the
minimum eigenvalue of the original model, if its D matrix is not full rank to begin with. This serves
the purpose for most problems if user does not want to go through the trouble of model
pretransformation.
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[1] Zhou, K., “Frequency-weighted model reduction with L∞ error bounds,” Syst. Contr. Lett., Vol. 21,
115-125, 1993.
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See Also
reduce | balancmr | hankelmr | schurmr | ncfmr | hankelsv

Introduced before R2006a
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complexify
Replace ureal atoms by summations of ureal and ucomplex (or ultidyn) atoms

Syntax
MC = complexify(M,alpha)

MC = complexify(M,alpha,'ultidyn')

Description
The command complexify replaces ureal atoms with sums of ureal and ucomplex atoms using
usubs. Optionally, the sum can consist of a ureal and ultidyn atom.

complexify is used to improve the conditioning of robust stability calculations (robstab) for
situations when there are predominantly ureal uncertain elements.

MC = complexify(M,alpha) results in each ureal atom in MC having the same Name and
NominalValue as the corresponding ureal atom in M. If Range is the range of one ureal atom
from M, then the range of the corresponding ureal atom in MC is

[Range(1)+alpha*diff(Range)/2 Range(2)-alpha*diff(Range)/2]

The net effect is that the same real range is covered with a real and complex uncertainty. The real
parameter range is reduced by equal amounts at each end, and alpha represents (in a relative sense)
the reduction in the total range. The ucomplex atom will add this reduction in range back into MC,
but as a ball with real and imaginary parts.

The ucomplex atom has NominalValue of 0, and Radius equal to alpha*diff(Range). Its name
is the name of the original ureal atom, appended with the characters '_cmpxfy'.

MC = complexify(M,alpha,'ultidyn') is the same, except that gain-bounded ultidyn atoms
are used instead of ucomplex atoms. The ultidyn atom has its Bound equal to
alpha*diff(Range).

Examples

Complexified Uncertain Parameter

To illustrate complexification, create a uncertain real parameter, cast it to an uncertain matrix, and
apply a 10% complexification.

a = umat(ureal('a',2.25,'Range',[1.5 3])); 
b = complexify(a,.1); 
as = usample(a,200); 
bs = usample(b,4000);

Make a scatter plot of the values that the complexified matrix (scalar) can take, as well as the values
of the original uncertain real parameter.

1 Functions

1-36



plot(real(bs(:)),imag(bs(:)),'.',real(as(:)),imag(as(:)),'r.')
axis([1 3.5 -0.2 0.2])

See Also
icomplexify | robstab

Topics
“Getting Reliable Estimates of Robustness Margins”

Introduced in R2007a
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cmsclsyn
Approximately solve constant-matrix, upper bound µ-synthesis problem

Syntax
[QOPT,BND] = cmsclsyn(R,U,V,BlockStructure);

[QOPT,BND] = cmsclsyn(R,U,V,BlockStructure,opt);

[QOPT,BND] = cmsclsyn(R,U,V,BlockStructure,opt,qinit);

[QOPT,BND] = cmsclsyn(R,U,V,BlockStructure,opt,'random',N)

Description
cmsclsyn approximately solves the constant-matrix, upper bound µ-synthesis problem by
minimization,

minQ ∈ Cr × tμΔ R + UQV

for given matrices R ∊ Cnxm, U ∊ Cnxr, V ∊ Ctxm, and a set Δ ⊂ Cmxn. This applies to constant matrix
data in R, U, and V.

[QOPT,BND] = cmsclsyn(R,U,V,BlockStructure) minimizes, by choice of Q. QOPT is the
optimum value of Q, the upper bound of mussv(R+U*Q*V,BLK), BND. The matrices R,U and V are
constant matrices of the appropriate dimension. BlockStructure is a matrix specifying the
perturbation blockstructure as defined for mussv.

[QOPT,BND] = cmsclsyn(R,U,V,BlockStructure,OPT) uses the options specified by OPT in the
calls to mussv. See mussv for more information. The default value for OPT is 'cUsw'.

[QOPT,BND] = cmsclsyn(R,U,V,BlockStructure,OPT,QINIT) initializes the iterative
computation from Q = QINIT. Because of the nonconvexity of the overall problem, different starting
points often yield different final answers. If QINIT is an N-D array, then the iterative computation is
performed multiple times - the i'th optimization is initialized at Q = QINIT(:,:,i). The output
arguments are associated with the best solution obtained in this brute force approach.

[QOPT,BND] = cmsclsyn(R,U,V,BlockStructure,OPT,'random',N) initializes the iterative
computation from N random instances of QINIT. If NCU is the number of columns of U, and NRV is the
number of rows of V, then the approximation to solving the constant matrix µ synthesis problem is
two-fold: only the upper bound for µ is minimized, and the minimization is not convex, hence the
optimum is generally not found. If U is full column rank, or V is full row rank, then the problem can
(and is) cast as a convex problem, [Packard, Zhou, Pandey and Becker], and the global optimizer (for
the upper bound for µ) is calculated.

Algorithms
The cmsclsyn algorithm is iterative, alternatively holding Q fixed, and computing the mussv upper
bound, followed by holding the upper bound multipliers fixed, and minimizing the bound implied by
choice of Q. If U or V is square and invertible, then the optimization is reformulated (exactly) as an
linear matrix inequality, and solved directly, without resorting to the iteration.
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References
Packard, A.K., K. Zhou, P. Pandey, and G. Becker, “A collection of robust control problems leading to
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See Also
musyn | hinfsyn | mussv | robstab | robgain

Introduced before R2006a
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dcgainmr
Reduced order model

Syntax
[sysr,syse,gain] = dcgainmr(sys,ord)

Description
[sysr,syse,gain] = dcgainmr(sys,ord) returns a reduced order model of a continuous-time
LTI system SYS by truncating modes with least DC gain.

Specify your LTI continuous-time system in sys. The order is specified in ord.

This function returns:

• sysr—The reduced order models (a multidimensional array if sys is an LTI array)
• syse—The difference between sys and sysr (syse=sys-sysr)
• gain—The g-factors (dc-gains)

The DC gain of a complex mode

(1/(s+p))*c*b' 

is defined as

norm(b)*norm(c)/abs(p)

See Also
reduce

Introduced in R2008a
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decinfo
Describe how entries of matrix variable X relate to decision variables

Syntax
decX = decinfo(lmisys,X)
decinfo(lmisys)

Description
decinfo expresses the entries of a matrix variable X in terms of the decision variables x1, . . ., xN.
Recall that the decision variables are the free scalar variables of the problem, or equivalently, the free
entries of all matrix variables described in lmisys. Each entry of X is either a hard zero, some
decision variable xn, or its opposite –xn.

If X is the identifier of X supplied by lmivar, the command decX = decinfo(lmisys,X) returns
an integer matrix decX of the same dimensions as X whose (i, j) entry is

• 0 if X(i, j) is a hard zero
• n if X(i, j) = xn (the n-th decision variable)
• –n if X(i, j) = –xn

decX clarifies the structure of X as well as its entry-wise dependence on x1, . . ., xN. This is useful to
specify matrix variables with atypical structures (see lmivar).

decinfo can also be used in interactive mode by invoking it with a single argument, as
decinfo(lmisys). It then prompts the user for a matrix variable and displays in return the decision
variable content of this variable.

Examples
Example 1

Consider an LMI with two matrix variables X and Y with structure:

• X = x I3 with x scalar
• Y rectangular of size 2-by-1

If these variables are defined by

setlmis([]) 
X = lmivar(1,[3 0]) 
Y = lmivar(2,[2 1]) 
    : 
    : 
lmis = getlmis

the decision variables in X and Y are given by

dX = decinfo(lmis,X)
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dX = 
    1     0     0 
    0     1     0 
    0     0     1

dY = decinfo(lmis,Y)

dY = 
    2 
    3

This indicates a total of three decision variables x1, x2, x3 that are related to the entries of X and Y by

X =
x1 0 0
0 x1 0
0 0 x1

, Y =
x2
x3

Note that the number of decision variables corresponds to the number of free entries in X and Y when
taking structure into account.

Example 2

Suppose that the matrix variable X is symmetric block diagonal with one 2-by-2 full block and one 2-
by-2 scalar block, and is declared by

setlmis([]) 
X = lmivar(1,[2 1;2 0]) 
        : 
lmis = getlmis

The decision variable distribution in X can be visualized interactively as follows:

decinfo(lmis)

There are 4 decision variables labeled x1 to x4 in this problem.

Matrix variable Xk of interest (enter k between 1 and 1, or 0 to quit):

?> 1

The decision variables involved in X1 are among {-x1,...,x4}.
Their entry-wise distribution in X1 is as follows
        (0,j>0,-j<0 stand for 0,xj,-xj, respectively):

X1 :

    1     2     0     0 
    2     3     0     0 
    0     0     4     0 
    0     0     0     4
    
             *********

Matrix variable Xk of interest (enter k between 1 and 1, or 0 to quit):

?> 0

See Also
lmivar | mat2dec | dec2mat
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decnbr
Total number of decision variables in system of LMIs

Syntax
ndec = decnbr(lmisys)

Description
The function decnbr returns the number ndec of decision variables (free scalar variables) in the LMI
problem described in lmisys. In other words, ndec is the length of the vector of decision variables.

Examples
For an LMI system lmis with two matrix variables X and Y such that

• X is symmetric block diagonal with one 2-by-2 full block, and one 2-by-2 scalar block
• Y is 2-by-3 rectangular,

the number of decision variables is

ndec = decnbr(LMIs)

ndec = 
       10

This is exactly the number of free entries in X and Y when taking structure into account (see
decinfo for more details).

See Also
dec2mat | decinfo | mat2dec

Introduced before R2006a
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dec2mat
Given values of decision variables, derive corresponding values of matrix variables

Syntax
valX = dec2mat(lmisys,decvars,X)

Description
Given a value decvars of the vector of decision variables, dec2mat computes the corresponding
value valX of the matrix variable with identifier X. This identifier is returned by lmivar when
declaring the matrix variable.

Recall that the decision variables are all free scalar variables in the LMI problem and correspond to
the free entries of the matrix variables X1, . . ., XK. Since LMI solvers return a feasible or optimal
value of the vector of decision variables, dec2mat is useful to derive the corresponding feasible or
optimal values of the matrix variables.

Examples
See the description of feasp.

See Also
mat2dec | decnbr | decinfo

Introduced before R2006a
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defcx
Help specify cTx objectives for mincx solver

Syntax
[V1,...,Vk] = defcx(lmisys,n,X1,...,Xk)

Description
defcx is useful to derive the c vector needed by mincx when the objective is expressed in terms of
the matrix variables.

Given the identifiers X1,...,Xk of the matrix variables involved in this objective, defcx returns the
values V1,...,Vk of these variables when the n-th decision variable is set to one and all others to
zero.

See Also
mincx | decinfo

Introduced before R2006a
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dellmi
Remove LMI from system of LMIs

Syntax
newsys = dellmi(lmisys,n)

Description
dellmi deletes the n-th LMI from the system of LMIs described in lmisys. The updated system is
returned in newsys.

The ranking n is relative to the order in which the LMIs were declared and corresponds to the
identifier returned by newlmi. Since this ranking is not modified by deletions, it is safer to refer to
the remaining LMIs by their identifiers. Finally, matrix variables that only appeared in the deleted
LMI are removed from the problem.

Examples
Suppose that the three LMIs

A1
TX1 + X1A1 + Q1 < 0

A2
TX2 + X2A2 + Q2 < 0

A3
TX3 + X3A3 + Q3 < 0

have been declared in this order, labeled LMI1, LMI2, LMI3 with newlmi, and stored in lmisys. To
delete the second LMI, type

lmis = dellmi(lmisys,LMI2)

lmis now describes the system of LMIs

A1
TX1 + X1A1 + Q1 < 0

A3
TX3 + X3A3 + Q3 < 0

and the second variable X2 has been removed from the problem since it no longer appears in the
system.

To further delete LMI3 from the system, type

lmis = dellmi(lmis,LMI3)

or equivalently

lmis = dellmi(lmis,3)

Note that the system has retained its original ranking after the first deletion.
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See Also
newlmi | lmiedit | lmiinfo

Introduced before R2006a
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delmvar
Remove one matrix variable from LMI problem

Syntax
newsys = delmvar(lmisys,X)

Description
delmvar removes the matrix variable X with identifier X from the list of variables defined in lmisys.
The identifier X should be the second argument returned by lmivar when declaring X. All terms
involving X are automatically removed from the list of LMI terms. The description of the resulting
system of LMIs is returned in newsys.

Examples
Consider the LMI

0 <
ATY + BTY A + Q CX + D

XTCT + DT −(X + XT)

involving two variables X and Y with identifiers X and Y. To delete the variable X, type

lmisys = delmvar(lmisys,X)

Now lmisys describes the LMI

0 <
ATYB + BTY A + Q D

DT 0

with only one variable Y. Note that Y is still identified by the label Y.

See Also
lmivar | setmvar | lmiinfo

Introduced before R2006a

 delmvar

1-49



diag
Diagonal uncertain matrices; diagonals of an uncertain matrix

Syntax
MV = diag(V)
MV = diag(V,K)
VM = diag(M)
VM = diag(M,K)

Description
MV = diag(V) creates an uncertain matrix MV whose diagonal elements are the elements of the
uncertain vector V and whose off-diagonal elements are 0.

MV = diag(V,K) places the elements of V on the Kth diagonal of the matrix MV. K > 0 is above the
main diagonal and K < 0 is below the main diagonal.

VM = diag(M) extracts a vector VM containing the diagonal elements of the uncertain matrix M.

VM = diag(M,K) extracts the elements of the Kth diagonal of the matrix M. K > 0 is above the main
diagonal and K < 0 is below the main diagonal.

Examples

Create Uncertain Diagonal Matrix from Uncertain Vector

Create an uncertain matrix MV in which the diagonal elements are the elements of an uncertain
vector V, and the off-diagonal elements are all 0. First, create the uncertain vector V.

a = ureal('a',10);
b = ureal('b',5);
V = [1+a 2 3-b 4]

V =

  Uncertain matrix with 1 rows and 4 columns.
  The uncertainty consists of the following blocks:
    a: Uncertain real, nominal = 10, variability = [-1,1], 1 occurrences
    b: Uncertain real, nominal = 5, variability = [-1,1], 1 occurrences

Type "V.NominalValue" to see the nominal value, "get(V)" to see all properties, and "V.Uncertainty" to interact with the uncertain elements.

V is a 1-by-4 umat uncertain matrix, or in other words, an uncertain row vector with four elements.
Create MV such that the diagonals of MV are the elements of V.

MV = diag(V)

MV =

  Uncertain matrix with 4 rows and 4 columns.
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  The uncertainty consists of the following blocks:
    a: Uncertain real, nominal = 10, variability = [-1,1], 1 occurrences
    b: Uncertain real, nominal = 5, variability = [-1,1], 1 occurrences

Type "MV.NominalValue" to see the nominal value, "get(MV)" to see all properties, and "MV.Uncertainty" to interact with the uncertain elements.

To verify that MV is a diagonal matrix, examine its nominal value.

MV.NominalValue

ans = 4×4

    11     0     0     0
     0     2     0     0
     0     0    -2     0
     0     0     0     4

Next, create a matrix in which V forms the elements of the first diagonal below the main diagonal.

MV1 = diag(V,-1)

MV1 =

  Uncertain matrix with 5 rows and 5 columns.
  The uncertainty consists of the following blocks:
    a: Uncertain real, nominal = 10, variability = [-1,1], 1 occurrences
    b: Uncertain real, nominal = 5, variability = [-1,1], 1 occurrences

Type "MV1.NominalValue" to see the nominal value, "get(MV1)" to see all properties, and "MV1.Uncertainty" to interact with the uncertain elements.

MV1.NominalValue

ans = 5×5

     0     0     0     0     0
    11     0     0     0     0
     0     2     0     0     0
     0     0    -2     0     0
     0     0     0     4     0

Extract Diagonal Elements of Uncertain Matrix

Obtain a vector by extracting the diagonal elements of an uncertain matrix. First, create an uncertain
matrix.

a = ureal('a',10);
b = ureal('b',5);
M = [1+a 2 3+b; 4 5+a 6; 7 8 9]

M =

  Uncertain matrix with 3 rows and 3 columns.
  The uncertainty consists of the following blocks:
    a: Uncertain real, nominal = 10, variability = [-1,1], 2 occurrences
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    b: Uncertain real, nominal = 5, variability = [-1,1], 1 occurrences

Type "M.NominalValue" to see the nominal value, "get(M)" to see all properties, and "M.Uncertainty" to interact with the uncertain elements.

M is a 3-by-3 uncertain matrix. Extract the diagonals of M into a three-element column vector.

VM = diag(M)

VM =

  Uncertain matrix with 3 rows and 1 columns.
  The uncertainty consists of the following blocks:
    a: Uncertain real, nominal = 10, variability = [-1,1], 1 occurrences

Type "VM.NominalValue" to see the nominal value, "get(VM)" to see all properties, and "VM.Uncertainty" to interact with the uncertain elements.

VM is a 3-by-1 umat, or an uncertain column vector. Note that V depends only on the uncertain
parameter a, because the diagonal elements of M do not depend on b.

Next, extract a vector containing the elements of the first diagonal below the main diagonal of M.

VM1 = diag(M,-1)

VM1 =

  Uncertain matrix with 2 rows, 1 columns, and no uncertain blocks.

Type "VM1.NominalValue" to see the nominal value, "get(VM1)" to see all properties, and "VM1.Uncertainty" to interact with the uncertain elements.

This vector contains no uncertain elements at all. Examine its values.

VM1.NominalValue

ans = 2×1

     4
     8

Input Arguments
V — Uncertain vector
umat object

Uncertain vector, specified as a umat object with dimensions 1-by-N (row vector) or N-by-1 (column
vector).

M — Uncertain matrix
umat object

Uncertain matrix, specified as a umat object.

K — Index of diagonal
0 (default) | integer

Index of diagonal, specified as an integer. K = 0 represents the main diagonal, K > 0 is above the
main diagonal, and K < 0 is below the main diagonal.
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Output Arguments
MV — Uncertain diagonal matrix
umat object

Uncertain diagonal matrix, returned as a umat object. The elements of the input vector V form the
Kth diagonal of the matrix. If you omit K, then V forms the main diagonal of the matrix. MV is a square
matrix of order length(V) + abs(K).

VM — Uncertain column vector
umat object

Uncertain column vector, returned as a umat object. The elements of VM are the diagonal elements of
the input matrix M.

See Also
append | diag | umat

Introduced before R2006a
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diskmargin
Disk-based stability margins of feedback loops

Syntax
[DM,MM] = diskmargin(L)
MMIO = diskmargin(P,C)
___  = diskmargin( ___ ,sigma)

Description
[DM,MM] = diskmargin(L) computes the disk-based stability margins for the SISO or MIMO
negative feedback loop feedback(L,eye(N)), where N is the number of inputs and outputs in L.

The diskmargin command returns loop-at-a-time stability margins in DM and multiloop margins in
MM. Disk-based margin analysis provides a stronger guarantee of stability than the classical gain and
phase margins. For general information about disk margins, see “Stability Analysis Using Disk
Margins”.

MMIO = diskmargin(P,C) computes the stability margins when considering independent,
concurrent variations at both the plant inputs and plant outputs the negative feedback loop of the
following diagram.

___  = diskmargin( ___ ,sigma) specifies an additional skew parameter that biases the modeled
gain and phase variation toward gain increase (positive sigma) or gain decrease (negative sigma).
You can use this argument to test the relative sensitivity of stability margins to gain increases versus
decreases. You can use this argument with any of the previous syntaxes.

Examples
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Disk Margins of MIMO Feedback Loop

diskmargin computes both loop-at-a-time and multiloop disk margins. This example illustrates that
loop-at-a-time margins can give an overly optimistic assessment of the true robustness of MIMO
feedback loops. Margins of individual loops can be sensitive to small perturbations in other loops, and
loop-at-a-time margins ignore such loop interactions.

Consider the two-channel MIMO feedback loop of the following illustration.

The plant model P is drawn from “MIMO Stability Margins for Spinning Satellite” and C is the static
output-feedback gain [1 -2;0 1].

a = [0 10;-10 0]; 
b = eye(2); 
c = [1 10;-10 1]; 
P = ss(a,b,c,0); 
C = [1 -2;0 1]; 

Compute the disk-based margins at the plant output. The negative-feedback open-loop response at
the plant output is Lo = P*C.

Lo = P*C;
[DMo,MMo] = diskmargin(Lo);

Examine the loop-at-a-time disk margins returned in the structure array DM. Each entry in DM contains
the stability margins of the corresponding feedback channel.

DMo(1)

ans = struct with fields:
           GainMargin: [0 Inf]
          PhaseMargin: [-90 90]
           DiskMargin: 2
           LowerBound: 2
           UpperBound: 2
            Frequency: Inf
    WorstPerturbation: [2x2 ss]

DMo(2)

ans = struct with fields:
           GainMargin: [0 Inf]
          PhaseMargin: [-90 90]
           DiskMargin: 2
           LowerBound: 2
           UpperBound: 2
            Frequency: 0
    WorstPerturbation: [2x2 ss]
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The loop-at-a-time margins are excellent (infinite gain margin and 90° phase margin). Next examine
the multiloop disk margins MMo. These consider independent and concurrent gain (phase) variations
in both feedback loops. This is a more realistic assessment because plant uncertainty typically affects
both channels simultaneously.

MMo

MMo = struct with fields:
           GainMargin: [0.6839 1.4621]
          PhaseMargin: [-21.2607 21.2607]
           DiskMargin: 0.3754
           LowerBound: 0.3754
           UpperBound: 0.3762
            Frequency: 0
    WorstPerturbation: [2x2 ss]

The multiloop gain and phase margins are much weaker than their loop-at-a-time counterparts.
Stability is only guaranteed when the gain in each loop varies by a factor less than 1.46, or when the
phase of each loop varies by less than 21°. Use diskmarginplot to visualize the gain and phase
margins as a function of frequency.

diskmarginplot(Lo)

Typically, there is uncertainty in both the actuators (inputs) and sensors (outputs). Therefore, it is a
good idea to compute the disk margins at the plant inputs as well as the outputs. Use Li = C*P to
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compute the margins at the plant inputs. For this system, the margins are the same at the plant
inputs and outputs.

Li = C*P;
[DMi,MMi] = diskmargin(Li);
MMi

MMi = struct with fields:
           GainMargin: [0.6839 1.4621]
          PhaseMargin: [-21.2607 21.2607]
           DiskMargin: 0.3754
           LowerBound: 0.3754
           UpperBound: 0.3762
            Frequency: 0
    WorstPerturbation: [2x2 ss]

Finally, you can also compute the multiloop disk margins for gain or phase variations at both the
inputs and outputs of the plant. This approach is the most thorough assessment of stability margins,
because it this considers independent and concurrent gain or phase variations in all input and output
channels. As expected, of all three measures, this gives the smallest gain and phase margins.

MMio = diskmargin(P,C);
diskmarginplot(MMio.GainMargin)

Stability is only guaranteed when the gain varies by a less than 2 dB or when the phase varies by less
than 13°. However, these variations take place at the inputs and the outputs of P, so the total change
in I/O gain or phase is twice that.
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Sensitivity of Disk-Based Margins to Gain Increase and Decrease

By default, diskmargin computes a symmetric gain margin, with gmin = 1/gmax, and an
associated phase margin. In some systems, however, loop stability may be more sensitive to increases
or decreases in open-loop gain. Use the skew parameter sigma to examine this sensitivity.

Compute the disk margin and associated disk-based gain and phase margins for a SISO transfer
function, at three values of sigma. Negative sigma biases the computation toward gain decrease.
Positive sigma biases toward gain increase.

L = tf(25,[1 10 10 10]);
DMdec = diskmargin(L,-2);
DMbal = diskmargin(L,0);
DMinc = diskmargin(L,2); 
DGMdec = DMdec.GainMargin

DGMdec = 1×2

    0.4013    1.3745

DGMbal = DMbal.GainMargin

DGMbal = 1×2

    0.6273    1.5942

DGMinc = DMinc.GainMargin  

DGMinc = 1×2

    0.7717    1.7247

Put together, these results show that in the absence of phase variation, stability is maintained for
relative gain variations between 0.4 and 1.72. To see how the phase margin depends on these gain
variations, plot the stable ranges of gain and phase variations for each diskmargin result.

diskmarginplot([DGMdec;DGMbal;DGMinc])
legend('sigma = -2','sigma = 0','sigma = 2')
title('Stable range of gain and phase variations')
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This plot shows that the feedback loop can tolerate larger phase variations when the gain decreases.
In other words, the loop stability is more sensitive to gain increase. Although sigma = –2 yields a
phase margin as large as 30 degrees, this large value assumes a small gain increase of less than 3 dB.
However, the plot shows that when the gain increases by 4 dB, the phase margin drops to less than
15 degrees. By contrast, it remains greater than 30 degrees when the gain decreases by 4 dB.

Thus, varying the skew sigma can give a fuller picture of sensitivity to gain and phase uncertainty.
Unless you are mostly concerned with gain variations in one direction (increase or decrease), it is not
recommended to draw conclusions from a single nonzero value of sigma. Instead use the default
sigma = 0 to get unbiased estimates of gain and phase margins. When using nonzero values of
sigma, use both positive and negative values to compare relative sensitivity to gain increase and
decrease.

Input Arguments
L — Open-loop response
dynamic system model | model array

Open-loop response, specified as a dynamic system model. L can be SISO or MIMO, as long as it has
the same number of inputs and outputs. diskmargin computes the disk-based stability margins for
the negative-feedback closed-loop system feedback(L,eye(N)).

 diskmargin

1-59



To compute the disk margins of the positive feedback system feedback(L,eye(N),+1), use
diskmargin(-L).

When you have a plant P and a controller C, you can compute the disk margins for gain (or phase)
variations at the plant inputs or outputs, as in the following diagram.

• To compute margins at the plant outputs, set L = P*C.
• To compute margins at the plant inputs, set L = C*P.

L can be continuous time or discrete time. If L is a generalized state-space model (genss or uss)
then diskmargin uses the current or nominal value of all control design blocks in L.

If L is a frequency-response data model (such as frd), then diskmargin computes the margins at
each frequency represented in the model. The function returns the margins at the frequency with the
smallest disk margin.

If L is a model array, then diskmargin computes margins for each model in the array.

P — Plant
dynamic system model

Plant, specified as a dynamic system model. P can be SISO or MIMO, as long as P*C has the same
number of inputs and outputs. diskmargin computes the disk-based stability margins for a negative-
feedback closed-loop system. To compute the disk margins of the system with positive feedback, use
diskmargin(P,-C).

P can be continuous time or discrete time. If P is a generalized state-space model (genss or uss)
then diskmargin uses the current or nominal value of all control design blocks in P.

If P is a frequency-response data model (such as frd), then diskmargin computes the margins at
each frequency represented in the model. The function returns the margins at the frequency with the
smallest disk margin.

C — Controller
dynamic system model
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Controller, specified as a dynamic system model. C can be SISO or MIMO, as long as P*C has the
same number of inputs and outputs. diskmargin computes the disk-based stability margins for a
negative-feedback closed-loop system. To compute the disk margins of the system with positive
feedback, use diskmargin(P,-C).

C can be continuous time or discrete time. If C is a generalized state-space model (genss or uss)
then diskmargin uses the current or nominal value of all control design blocks in C.

If C is a frequency-response data model (such as frd), then diskmargin computes the margins at
each frequency represented in the model. The function returns the margins at the frequency with the
smallest disk margin.

sigma — Skew
0 (default) | real scalar

Skew of uncertainty region used to compute the stability margins, specified as a real scalar value.
This parameter biases the uncertainty used to model gain and phase variations toward gain increase
or gain decrease.

• The default sigma = 0 uses a balanced model of gain variation in a range [gmin,gmax], with
gmin = 1/gmax.

• Positive sigma uses a model with more gain increase than decrease (gmax > 1/gmin).
• Negative sigma uses a model with more gain decrease than increase (gmin < 1/gmax).

Use the default sigma = 0 to get unbiased estimates of gain and phase margins. You can test relative
sensitivity to gain increase and decrease by comparing the margins obtained with both positive and
negative sigma values. For an example, see “Sensitivity of Disk-Based Margins to Gain Increase and
Decrease” on page 1-58. For more detailed information about how the choice of sigma affects the
margin computation, see “Stability Analysis Using Disk Margins”.

Output Arguments
DM — Disk margins for each feedback channel
structure | structure array

Disk margins for each feedback channel with all other loops closed, returned as a structure for SISO
feedback loops, or an N-by-1 structure array for a MIMO loop with N feedback channels. The fields of
DM(i) are:

Field Value
GainMargin Disk-based gain margins of the corresponding feedback channel, returned

as a vector of the form [gmin,gmax]. These values express in absolute
units the amount by which the loop gain in that channel can decrease or
increase while preserving stability. For example, if DM(i).GainMargin =
[0.8,1.25] then the gain of the ith loop can be multiplied by any factor
between 0.8 and 1.25 without causing instability. When sigma = 0, gmin
= 1/gmax. If the open-loop gain can change sign without loss of stability,
gmin can be less than zero for large enough negative sigma. If the
nominal closed-loop system is unstable, then DM(i).GainMargin = [1
1].
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Field Value
PhaseMargin Disk-based phase margin of the corresponding feedback channel, returned

as a vector of the form [-pm,pm] in degrees. These values express the
amount by which the loop phase in that channel can decrease or increase
while preserving stability. If the closed-loop system is unstable, then
DM(i).PhaseMargin = [0 0].

DiskMargin Maximum ɑ compatible with closed-loop stability for the corresponding
feedback channel. ɑ parameterizes the uncertainty in the loop response
(see “Algorithms” on page 1-65). If the closed-loop system is unstable,
then DM(i).DiskMargin = 0.

LowerBound Lower bound on disk margin. This value is the same as DiskMargin.
UpperBound Upper bound on disk margin. This value represents an upper limit on the

actual disk margin of the system. In other words, the disk margin is
guaranteed to be no worse than LowerBound and no better than
UpperBound.

Frequency Frequency at which the weakest margin occurs for the corresponding loop
channel. This value is in rad/TimeUnit, where TimeUnit is the TimeUnit
property of L.

WorstPerturbation Smallest gain and phase variation that drives the feedback loop unstable,
returned as a state-space (ss) model with N inputs and outputs, where N is
the number of inputs and outputs in L. The system F(s) =
WorstPerturbation is such that the following feedback loop is
marginally stable, with a pole on the stability boundary at the frequency
DM(i).Frequency.

This state-space model is a diagonal perturbation of the form F(s) =
diag(f1(s),...,fN(s)). Each fj(s) is a real-parameter dynamic
system that realizes the worst-case complex gain and phase variation
applied to each channel of the feedback loop. For the loop-at-a-time margin
of the kth feedback loop, only the kth entry fk(s) of
DM(k).WorstPerturbation differs from unity.

For more information on interpreting WorstPerturbation, see “Disk
Margin and Smallest Destabilizing Perturbation”

When analyzing a linear approximation of a nonlinear system, it can be
useful to inject WorstPerturbation into the nonlinear simulation to
further analyze the destabilizing affect of this worst-case gain and phase
variation. For an example, see “Robust MIMO Controller for Two-Loop
Autopilot”.
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When L = P*C is the open-loop response of a system comprising a controller and plant with unit
negative feedback in each channel, DM contains the stability margins for variations at the plant
outputs. To compute the stability margins for variations at the plant inputs, use L = C*P. To compute
the stability margins for simultaneous, independent variations at both the plant inputs and outputs,
use MMIO = diskmargin(P,C).

When L is a model array, DM has additional dimensions corresponding to the array dimensions of L.
For instance, if L is a 1-by-3 array of two-input, two-output models, then DM is a 2-by-3 structure
array. DM(j,k) contains the margins for the jth feedback channel of the kth model in the array.

MM — Multiloop disk margins
structure

Multiloop disk margins, returned as a structure. The gain (or phase) margins quantify how much gain
variation (or phase variation) the system can tolerate in all feedback channels at once while
remaining stable. Thus, MM is a single structure regardless of the number of feedback channels in the
system. (For SISO systems, MM = DM.) The fields of MM are:

Field Value
GainMargin Multiloop disk-based gain margins, returned as a vector of the form

[gmin,gmax]. These values express in absolute units the amount by which
the loop gain can vary in all channels independently and concurrently while
preserving stability. For example, if MM.GainMargin = [0.8,1.25] then
the gain of all loops can be multiplied by any factor between 0.8 and 1.25
without causing instability. When sigma = 0, gmin = 1/gmax.

PhaseMargin Multiloop disk-based phase margin, returned as a vector of the form [-
pm,pm] in degrees. These values express the amount by which the loop
phase can vary in all channels independently and concurrently while
preserving stability.

DiskMargin Maximum ɑ compatible with closed-loop stability. ɑ parameterizes the
uncertainty in the loop response (see “Algorithms” on page 1-65).

LowerBound Lower bound on disk margin. This value is the same as DiskMargin.
UpperBound Upper bound on disk margin. This value represents an upper limit on the

actual disk margin of the system. In other words, the disk margin is
guaranteed to be no worse than LowerBound and no better than
UpperBound.

Frequency Frequency at which the weakest margin occurs. This value is in rad/
TimeUnit, where TimeUnit is the TimeUnit property of L.
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Field Value
WorstPerturbation Smallest gain and phase variation that drives the feedback loop unstable,

returned as a state-space (ss) model with N inputs and outputs, where N is
the number of inputs and outputs in L. The system F(s) =
WorstPerturbation is such that the following feedback loop is marginally
stable, with a pole on the stability boundary at MM.Frequency.

This state-space model is a diagonal perturbation of the form F(s) =
diag(f1(s),...,fN(s)). Each fj(s) is a real-parameter dynamic
system that realizes the worst-case complex gain and phase variation
applied to each channel of the feedback loop.

For more information on interpreting WorstPerturbation, see “Disk
Margin and Smallest Destabilizing Perturbation”

When analyzing a linear approximation of a nonlinear system, it can be
useful to inject WorstPerturbation into the nonlinear simulation to
further analyze the destabilizing affect of this worst-case gain and phase
variation. For an example, see “Robust MIMO Controller for Two-Loop
Autopilot”.

When L = P*C is the open-loop response of a system comprising a controller and plant with unit
negative feedback in each channel, MM contains the stability margins for variations at the plant
outputs. To compute the stability margins for variations at the plant inputs, use L = C*P. To compute
the stability margins for simultaneous, independent variations at both the plant inputs and outputs,
use MMIO = diskmargin(P,C).

When L is a model array, MM is a structure array with one entry for each model in L.

MMIO — Disk margins for independent variations in all input and output channels
structure

Disk margins for independent variations applied simultaneously at input and output channels of the
plant P, returned as a structure having the same fields as MM.

For variations applied simultaneously at inputs and outputs, the WorstPerturbation field is itself a
structure with fields Input and Output. Each of these fields contains a state-space model such that
for Fi(s) = MMIO.WorstPerturbation.Input and Fo(s) =
MMIO.WorstPerturbation.Output, the system of the following diagram is marginally unstable,
with a pole on the stability boundary at the frequency MMIO.Frequency.
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These state-space models Input and Output are diagonal perturbations of the form F(s) =
diag(f1(s),...,fN(s)). Each fj(s) is a real-parameter dynamic system that realizes the worst-
case complex gain and phase variation applied to each channel of the feedback loop.

Tips
• diskmargin assumes negative feedback. To compute the disk margins of a positive feedback

system, use diskmargin(-L) or diskmargin(P,-C).
• To compute disk margins for a system modeled in Simulink®, first linearize the model to obtain the

open-loop response at a particular operating point. Then, use diskmargin to compute stability
margins for the linearized system. For more information, see “Stability Margins of a Simulink
Model”.

• To compute classical gain and phase margins, use allmargin.
• You can visualize disk margins using diskmarginplot.

Algorithms
diskmargin computes gain and phase margins by applying a disk-based uncertainty model to
represent gain and phase variations, and then finding the largest such disk for which the closed-loop
system is stable.

Gain and Phase Uncertainty Model

For SISO L, the uncertainty model for disk-margin analysis incorporates a multiplicative complex
uncertainty F into the loop transfer function as follows:

F = 1 + α 1− σ /2 δ
1− α 1 + σ /2 δ .

Here,

• δ is a gain-bounded dynamic uncertainty, normalized so that it always varies within the unit disk (|
δ| < 1).

• α sets the amount of gain and phase variation modeled by F. For fixed σ, the parameter ɑ controls
the size of the disk. For α = 0, the multiplicative factor is 1, corresponding to the nominal L.

• σ, called the skew, biases the modeled uncertainty toward gain increase or gain decrease. (For
details about the effect of skew on the uncertainty model, see “Stability Analysis Using Disk
Margins”.)

For MIMO systems, the model allows the uncertainty to vary independently in each channel:
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F j =
1 + α 1− σ /2 δ j
1− α 1 + σ /2 δ j

.

The model replaces the MIMO open-loop response L with L*F, where

F =
F1 0 0
0 ⋱ 0
0 0 FN

.

Disk-Margin Computation

For a given sigma, the disk margin is the largest ɑ for which the closed-loop system
feedback(L*F,1) (or feedback(L*F,eye(N)) for MIMO systems) is stable for all values of F. To
find this value, diskmargin solves a robust stability problem: Find the largest α such that the closed-
loop system is stable for all F in the uncertainty disk Δ(α,σ) described by

Δ α, σ = F = 1 + α 1− σ /2 δ
1− α 1 + σ /2 δ : δ < 1 .

In the SISO case, the robust stability analysis leads to

αmax = 1
S + σ − 1 /2 ∞

,

where S is the sensitivity function (1 + L)–1 .

In the MIMO case, the robust stability analysis leads to

αmax = 1
μΔ S + σ − 1 I

2
.

Here, μΔ is the structured singular value (mussv) for the diagonal structure

Δ =
δ1 0 0
0 ⋱ 0
0 0 δN

,

and δj is the normalized uncertainty for each Fj.

For more details about the margin computation, see [2].

Compatibility Considerations
Disk-based gain-margin range can include negative gains
Behavior changed in R2020a

The diskmargin command returns disk-based gain margins in the GainMargin field of its output
structures DM, MM, and MMIO. These margins take the form [gmin,gmax], meaning that the open-loop
gain can be multiplied by any factor in that range without loss of closed-loop stability. Beginning in
R2020a, the lower end of the range gmin can be negative for some negative values of the skew
sigma, if the closed-loop system remains stable even if the sign of the open-loop gain changes. The
skew controls the bias in the disk-based gain margin toward gain decrease or increase (see “Stability
Analysis Using Disk Margins”). Previously, the gain-margin range was always positive.
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See Also
allmargin | wcdiskmargin | margin | diskmarginplot

Topics
“Stability Analysis Using Disk Margins”
“Stability Margins of a Simulink Model”
“Disk Margin and Smallest Destabilizing Perturbation”

Introduced in R2018b
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diskmarginoptions
Customize disk-based stability-margin plots

Syntax
opts = diskmarginoptions
opts = diskmarginoptions('cstprefs')

Description
opts = diskmarginoptions returns the default option set for plots you generate with
diskmarginplot and wcdiskmarginplot. You can then use dot notation to change option values.
Use opts to customize the plot appearance.

opts = diskmarginoptions('cstprefs') initializes the plot options with the options you have
specified in the Control System Toolbox™ Preferences Editor. For more information about the editor,
see “Toolbox Preferences Editor”.

Examples

Disk Margin Plot with Customized Appearance

Plot the disk margins as a function of frequency of a system with the following open-loop response.

L = tf(25,[1 10 10 10]);

For the plot, specify the following attributes:

• Frequency units: Hz
• Gain margins on a log scale, in absolute units
• Grid on

opts = diskmarginoptions;
opts.FreqUnits = 'Hz';
opts.MagScale = 'log';
opts.MagUnits = 'abs';
opts.grid = 'on';

diskmarginplot(L,opts)
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Worst-Case Disk Margin Plot with Customized Appearance

Plot the worst-case disk margins as a function of frequency of a system with the following open-loop
response.

a  = ureal('a',10,'PlusMinus',[-4,4]);
L = tf(25,[1 a a a]);

For the plot, use the default preferences specified in your Control System Toolbox preference, except
specify the following attributes:

• Frequency units: Hz
• Gain margins on a log scale, in absolute units
• Grid on

opts = diskmarginoptions('cstprefs');
opts.FreqUnits = 'Hz';
opts.MagScale = 'log';
opts.MagUnits = 'abs';
opts.grid = 'on';

w = {2*pi*1e-3,2*pi*10};   % rad/s
wcdiskmarginplot(L,w,opts)
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The plot you obtain might differ in appearance, depending on your current Control System Toolbox
preference settings. (See “Toolbox Preferences Editor”.)

Output Arguments
opts — Options for disk margin plot
diskmarginplot options set

Options for disk-margin plots of dynamic systems, returned as a diskmarginplot options set.
Initialize the value of opts with either default options or the values specified in the Control System
Toolbox preferences editor. Customize the option values using dot notation. Then, use opts with
diskmarginplot or wcdiskmarginplot to customize plots of the disk-based stability margins of
dynamic systems. The following table lists the available options.
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Option Description
FreqUnits Frequency units, specified as one of the following:

• 'rad/second' (default)
• 'auto' — Use frequency units rad/TimeUnit relative

to system time units specified in the TimeUnit
property of the dynamic system.

• 'Hz'
• 'rpm'
• 'kHz'
• 'MHz'
• 'GHz'
• 'rad/nanosecond'
• 'rad/microsecond'
• 'rad/millisecond'
• 'rad/minute'
• 'rad/hour'
• 'rad/day'
• 'rad/week'
• 'rad/month'
• 'rad/year'
• 'cycles/nanosecond'
• 'cycles/microsecond'
• 'cycles/millisecond'
• 'cycles/hour'
• 'cycles/day'
• 'cycles/week'
• 'cycles/month'
• 'cycles/year'

FreqScale Frequency scale, specified as:

• 'log' (default)
• 'linear'

MagUnits Units of gain margin, specified as:

• 'dB' (default)
• 'abs' — Absolute units

MagScale Scale of gain-margin plot, specified as:

• 'linear' (default)
• 'log'
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Option Description
PhaseUnits Units of phase margin, specified as:

• 'deg' (default)
• 'rad'

Title, XLabel, YLabel Title and axis label text and style, specified as a structure
with the following fields:

• String — Label of the title, x-axis, or y-axis
• FontSize
• FontWeight — 'Normal' (default) or 'Bold'
• FontAngle — 'Normal' (default) or 'Italic'
• 'Color' — [0 0 0] (default)
• Interpreter — 'tex' (default)

TickLabel Tick label style, specified as a structure with the following
fields:

• FontSize
• FontWeight — 'Normal' (default) or 'Bold'
• FontAngle — 'Normal' (default) or 'Italic'
• 'Color' — [0 0 0] (default)

Grid Show or hide the grid, specified as:

• 'off' (default)
• 'on'

GridColor Color of grid lines, specified as a vector of RGB values in
the range [0,1]. The default value is
[0.15,0.15,0.15].

XlimMode, YlimMode Selection mode for axis limits, specified as:

• 'auto' (default) — Set axis limits automatically based
on plotted data.

• 'manual' — Specify axis limits using XLim and YLim
options.

Xlim, Ylim Axis limits, specified as a two-element vector of the form
[min,max].

See Also
diskmarginplot | wcdiskmarginplot

Introduced in R2020a
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diskmarginplot
Visualize disk-based stability margins

Syntax
diskmarginplot(L)
diskmarginplot(L1,...,LN)
diskmarginplot(L1,LineSpec1,...,LN,LineSpecN)
diskmarginplot( ___ ,sigma)
diskmarginplot( ___ ,w)
diskmarginplot( ___ ,opts)

diskmarginplot(DGM)
diskmarginplot(DGM,'disk')
diskmarginplot(DGM,'nyquist')
diskmarginplot(alpha,sigma, ___ )

diskmarginplot(AX, ___ )

Description
Margins as a Function of Frequency

diskmarginplot(L) plots the disk-based gain and phase margins for the SISO or MIMO negative
feedback loop feedback(L,eye(N)), where N is the number of inputs and outputs in the open-loop
response L.

For MIMO responses, diskmarginplot plots the multiloop disk margins. The disk-based gain
margin at each frequency is ±GM, where GM is the value shown in the plot in dB. Similarly, the disk-
based phase margin is ±PM degrees, where PM is the value shown on the plot. For details about disk-
based gain and phase margins, see diskmargin.

diskmarginplot(L1,...,LN) plots the disk-based gain and phase margins of multiple open-loop
responses on the same plot.

diskmarginplot(L1,LineSpec1,...,LN,LineSpecN) specifies a color, line style, and marker for
each system in the plot.

diskmarginplot( ___ ,sigma) plots the disk-based gain and phase margins computed using the
skew sigma to bias the gain variation toward gain increase (sigma > 0) or gain decrease (sigma <
0). If you have used diskmargin to obtain disk-based margins with some particular sigma, you can
use this syntax to see the frequency dependence of the margins at that sigma value. For sigma ≠ 0,
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the plotted value is GM = min(gmax,1/max(0,gmin)). In other words, the plot shows the largest
amount of gain change [1/GM,GM] that fits within the disk-based gain margin [gmin,gmax] of the
system at the specified sigma.

diskmarginplot( ___ ,w) plots the margins at the frequencies specified by w.

• If w is a cell array of the form {wmin,wmax}, then the plot shows the margins at frequencies
ranging between wmin and wmax.

• If w is a vector of frequencies, then the plot shows the margins at each specified frequency.

diskmarginplot( ___ ,opts) uses specified options to customize plot elements such as labels,
ticks, and grids. You can use this argument with any of the previous syntaxes.

Range of Gain and Phase Variations

diskmarginplot(DGM) plots the range of simultaneous gain and phase variations corresponding to
a disk-based gain margin. The plot also shows the maximum gain-only and phase-only variations (this
disk-based gain and phase margins). DGM is a vector of the form [gmin,gmax]. The gain margin DGM
can also be a scalar, which is equivalent to specifying the symmetric gain variation [1/DGM,DGM]. To
plot the ranges for multiple disk-based gain margins at once, use a two-column matrix of the form
[gmin1,gmax1;...;gminN,gmaxN]. For more information about disk-based gain margins, see
diskmargin.

diskmarginplot(DGM,'disk') plots the complex-valued disk of modeled gain and phase
variations corresponding to the disk-based gain margin DGM. For details about how disk-margin
analysis models gain and phase variations, see “Stability Analysis Using Disk Margins”.

diskmarginplot(DGM,'nyquist') plots the exclusion region in the Nyquist plane corresponding
to the disk margin DGM. The requirement that the closed-loop system remain stable for gain or phase
variations within the disk corresponding to DGM amounts to a requirement that the open-loop
response remain outside a disk-shaped exclusion region in the Nyquist plane. For more information,
see “Stability Analysis Using Disk Margins”.

diskmarginplot(alpha,sigma, ___ ) plots the range of gain and phase variations corresponding
to the disk size alpha and skew sigma. If either alpha or sigma is a vector, then the plot includes
the ranges for all specified values. If both alpha and sigma are vectors, then the plot includes the
ranges for the pairs alpha1,sigma1;...;alphaN,sigmaN.

To plot the modeled uncertainty disk corresponding to alpha,sigma, use this syntax with the 'disk'
flag. To plot the corresponding exclusion disk in the Nyquist plane, use this syntax with the
'nyquist' flag.

Plot on Specified Axes

diskmarginplot(AX, ___ ) draws a plot on the axes specified by an axes handle (axes or a
UIaxes object). Use this argument to specify axes when creating apps in “Develop Apps Using App
Designer”. You can use this argument with any of the previous syntaxes to draw any of the plots that
diskmarginplot can generate.

Examples
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Plot Gain and Phase Margins Versus Frequency

Plot the disk-based gain and phase margins of a system with open loop response L and closed-loop
response feedback(L,1).

L = tf(25,[1 10 10 10]);
diskmarginplot(L)

The disk-based gain margin at each frequency is at least ±GM, where GM is the value shown in the plot
in dB. Similarly, the disk-based phase margin is ±PM degrees. The disk-based margins returned by the
diskmargin command are the smallest margins over frequency. (Right-click on the plot and select
Characteristics > Minimum Disk Margin for a data tip containing information about these
minimum margins.)

Compare Disk Margins of Multiple Systems

Compare the disk-based gain and phase margins of two open-loop responses on the same plot.

L1 = tf(25,[1 10 10 10]);
L2 = tf([1 100],[1 10 20 50]);
diskmarginplot(L1,L2)
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You can customize the appearance of the plots using the LineSpec argument. Plot the margins
again, using a blue dashed line for L1 and red dots for L2.

diskmarginplot(L1,'b--',L2,'r.')
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Combined Gain and Phase Variation

The disk-based gain margins returned by diskmargin assume no phase variation, and the phase
margins assume no gain variation. In practice, systems experience both gain and phase variation at
the same time. Disk-margin analysis accounts for such simultaneous gain and phase variation.

Compute the disk-based gain and phase margins of a system. Then, use diskmarginplot to
visualize the corresponding allowed ranges of simultaneous gain and phase variation.

L = tf(25,[1 10 10 10]);
DM = diskmargin(L);
DGM = DM.GainMargin

DGM = 1×2

    0.6273    1.5942

DPM = DM.PhaseMargin

DPM = 1×2

  -25.8017   25.8017

diskmarginplot(DGM)
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The shaded region in the plot shows the range of simultaneous gain and phase variations that
preserve the stability of the closed-loop system feedback(L,1). When there is no phase variation,
the system can tolerate the full gain-variation range DGM, from –4 dB to 4 dB. If the phase is allowed
to vary by about ±20 degrees, the allowable gain-variation range drops to about –2.5 dB to 2 dB. At
the full phase-variation range of ±26 degrees, the system can tolerate no gain variation.

To visualize multiple ranges on the same plot, combine them into a two-column vector. For instance,
compute the disk margins of L with positive and negative skew and plot all three ranges of variation
together.

DMn = diskmargin(L,-2);
DGMn = DMn.GainMargin;
DMp = diskmargin(L,2);
DGMp = DMp.GainMargin;
DGMall = [DGMn;DGM;DGMp];
diskmarginplot(DGMall)

1 Functions

1-78



This plot shows that the feedback loop can tolerate larger gain and phase variations when the gain
decreases. In other words, the loop stability is more sensitive to gain increase. For more information
about how varying skew affects disk-based gain and phase margin estimates, see “Stability Analysis
Using Disk Margins”.

Disk of Uncertainty Corresponding to Disk-Based Gain Margin

Disk-based gain-margin analysis models gain and phase variation as an uncertain factor F,
multiplying an open-loop gain L. (For details of this model, see “Stability Analysis Using Disk
Margins”.) The stable range of gain and phase variations returned by the diskmargin command is
equivalent to a disk of F values for which the closed loop is stable. When you obtain the disk-based
gain and phase margins of a system, you can use diskmarginplot to visualize the corresponding
disk of F values.

L = tf(25,[1 10 10 10]);
DM = diskmargin(L);
DGM = DM.GainMargin

DGM = 1×2

    0.6273    1.5942

diskmarginplot(DGM,'disk')
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The plot shows the values of F in the complex plane, where the x-axis is the real part and the y-axis is
the imaginary part. The disk-based gain margin DGM uniquely determines this disk and the
corresponding disk-based phase margin, DPM.

Disk Model of Gain and Phase Variation

The uncertainty disk F is parameterized by two values: α, which sets the size of the disk, and σ, which
biases the gain variation toward gain increase or decrease. This parameterization is given by:

F = 1 + α 1− σ /2 δ
1− α 1 + σ /2 δ ,

where δ is a normalized uncertainty. (For details, see “Stability Analysis Using Disk Margins”.) For a
given range of gain variation, you can use gm2dm to convert the disk-based gain margin DGM to the α
and σ values that describe the corresponding disk. diskmarginplot can plot the F disk for a given
α,σ pair.

DGM = [0.8,2]

DGM = 1×2

    0.8000    2.0000
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[alpha,sigma] = gm2dm(DGM);
diskmarginplot(alpha,sigma,'disk')

In this case, σ is greater than zero because the disk-based gain range DGM = [0.8,2] includes more
gain increase than decrease. σ = 0 represents a gain that can increase as much as it can decrease. σ
< 0 represents a range with more decrease than increase. Plot the F disk for different values of σ to
see how the gain range (the diameter of the disk) varies with σ.

sigma = [-3,0,3];
diskmarginplot(alpha,sigma,'disk')
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For a fixed σ, α controls the size of the disk, and hence the amount of modeled uncertainty. Plot the
disk for several values of α at σ = 0.

sigma = 0;
alpha = [0.1,0.333,0.5];
diskmarginplot(alpha,sigma,'disk')
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Nyquist Plot of Exclusion Disk

As described in “Stability Analysis Using Disk Margins”, for a given σ, the largest uncertainty disk F
for which the closed-loop system feedback(L*F,1) remains stable can be interpreted as an
exclusion region that the Nyquist curve of L cannot enter. For any value of σ, the exclusion disk
contains the critical point (–1,0) and is tangent to the Nyquist curve. The skew adjusts the size and
position of the tangent disks. You can use diskmarginplot to visualize these exclusion disks and
superimpose them on the Nyquist curve of L.

Compute disk-based gain margins for a system using three different skew values, one corresponding
to more gain increase than decrease (σ > 0), one corresponding to more gain decrease than increase
(σ < 0), and one balanced (σ = 0).

L = tf(25,[1 10 10 10]);
DMdec = diskmargin(L,-2);
DGMdec = DMdec.GainMargin;
DM = diskmargin(L,0);
DGM = DM.GainMargin;
DMinc = diskmargin(L,2);
DGMinc= DMinc.GainMargin;

To view the corresponding exclusion regions, plot the Nyquist plots of L and hold the figure. Then use
diskmarginplot with the 'nyquist' flag to add the exclusion regions to the plot.

 diskmarginplot

1-83



nyquist(L)
hold on
diskmarginplot([DGMdec;DGM;DGMinc],'nyquist')
hold off

As σ increases from –2 to 2, the disks move to the right, and each disk provides lower estimates of the
classical gain and phase margins.

Disk Margin Plot with Customized Appearance

Plot the disk margins as a function of frequency of a system with the following open-loop response.

L = tf(25,[1 10 10 10]);

For the plot, specify the following attributes:

• Frequency units: Hz
• Gain margins on a log scale, in absolute units
• Grid on

opts = diskmarginoptions;
opts.FreqUnits = 'Hz';
opts.MagScale = 'log';
opts.MagUnits = 'abs';
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opts.grid = 'on';

diskmarginplot(L,opts)

Input Arguments
L — Open-loop response
dynamic system model | model array

Open-loop response, specified as a dynamic system model. L can be SISO or MIMO, as long as it has
the same number of inputs and outputs. diskmarginplot plots the disk-based gain and phase
margins for the negative-feedback closed-loop system feedback(L,eye(N)).

To plot the margins of the positive feedback system feedback(L,eye(N),+1), use diskmargin(-
L).

 diskmarginplot

1-85



If L is an uncertain state-space model (uss or genss with uncertain blocks), then diskmarginplot
plots the margins of random samples of L. To visualize the worst-case stability margins of an
uncertain system, use wcdiskmarginplot.

If L is a frequency-response data model (such as frd), then diskmarginplot plots the margins at
each frequency represented in the model.

If L is a model array, then diskmarginplot plots the margins for all models in the array on the same
axis and in the same line style.

LineSpec — Line style, marker, and color
character vector | string

Line style, marker, and color, specified as a string or vector of one, two, or three characters. The
characters can appear in any order. You do not need to specify all three characteristics (line style,
marker, and color). For example, if you omit the line style and specify the marker, then the plot shows
only the marker and no line. For more information about configuring this argument, see the
LineSpec input argument of the plot function.
Example: 'r--' specifies a red dashed line
Example: '*b' specifies blue asterisk markers
Example: 'y' specifies a yellow line

sigma — Skew
0 (default) | real scalar | vector

Skew of uncertainty region used to compute the stability margins, specified as a real scalar or vector
(for diskmarginplot(alpha,sigma) plots only).

This parameter biases the uncertainty used to model gain and phase variations toward gain increase
or gain decrease.

• The default sigma = 0 uses a balanced model of gain variation in a range [gmin,gmax], with
gmin = 1/gmax.

• Positive sigma uses a model with more gain increase than decrease (gmin > 1/gmax).
• Negative sigma uses a model with more gain decrease than increase (gmin < 1/gmax).

For more detailed information about how the choice of sigma affects the margin computation, see
“Stability Analysis Using Disk Margins”.

Skew in diskmargin(L,sigma) Syntax

When plotting the gain margins of a dynamic system versus frequency, use the default sigma = 0 to
get unbiased estimates of gain and phase margins. For sigma = 0, the disk-based gain margin at
each frequency is ±GM, where GM is the value shown in the plot in dB.

If you have used diskmargin to obtain disk-based margins with some particular sigma, you can use
this syntax to see the frequency dependence of the margins at that sigma value. For sigma ≠ 0, the
plotted value is GM = min(gmax,1/max(0,gmin)). In other words, the plot shows the largest
amount of gain change [1/GM,GM] that fits within the disk-based gain margin [gmin,gmax] of the
system at the specified sigma.

For the syntax diskmarginplot(L,sigma), the skew sigma must be a scalar.
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Skew in diskmargin(alpha,sigma) Syntax

In the syntax diskmargin(alpha,sigma), the function plots the uncertainty disk parameterized by
the values alpha and sigma (see “Stability Analysis Using Disk Margins”). To convert between disk-
based gain margins and alpha, sigma parameterization, use dm2gm and gm2dm. For this syntax,
diskmarginplot enforces the relation alpha*abs(1+sigma) < 2.

For this syntax, the skew sigma can be a vector, allowing you to compare multiple disks on the same
plot. If alpha is a scalar and sigma is a vector, then the plot shows the disks corresponding to the
pairs alpha,sigma_k for each entry in sigma. If both alpha and sigma are vectors, then the plot
shows the disks for the pairs alpha1,sigma1;...;alphaN,sigmaN.

w — Frequencies
{wmin,wmax} | vector

Frequencies at which to plot stability margins, specified as the cell array {wmin,wmax} or as a vector
of frequency values.

• If w is a cell array of the form {wmin,wmax}, then the plot shows the margins at frequencies
between wmin and wmax.

• If w is a vector of frequencies, then the plot shows the margins at each specified frequency. For
example, use logspace to generate a row vector with logarithmically spaced frequency values.

Specify frequencies in units of rad/TimeUnit, where TimeUnit is the TimeUnit property of L.

opts — Plot options
diskmarginplot options set

Plot options, specified as a diskmarginplot options set that you create with diskmarginoptions.
Elements that you can customize include plot title, axes labels, and grids.

DGM — Disk-based gain margin
two-element vector | two-column matrix | scalar | column vector

Disk-based gain margin, specified as a scalar, a two-element vector of the form [gmin,gmax], or a
two-column matrix of the form [gmin1,gmax1; ...; gminN,gmaxN].

Use a two-element vector, DGM = [gmin,gmax] to plot the allowable range of simultaneous gain and
phase variations corresponding to the disk-based gain margin [gmin,gmax]. You can obtain
[gmin,gmax] in the GainMargin field of the output structures of the diskmargin command. You
can also obtain [gmin,gmax] from classical gain and phase margins using getDGM.

Using a scalar DGM is equivalent to specifying the symmetric gain margin [1/DGM,DGM].

To show the ranges of several disk-based gain margins on the same plot, use DGM =
[gmin1,gmax1;...;gminN,gmaxN]. For symmetric gain margins of the form [1/gmax,gmax], you
can use a column vector of the form [gmax1;gmax2;...;gmaxN].

alpha — Size of gain and phase variation
scalar | vector

Size of modeled gain and phase variation, specified as a scalar or vector. Disk-based gain-margin
analysis models gain and phase variation as a multiplicative uncertainty F, which is a disk of values
containing F = 1, corresponding to the nominal value of the system. The disk is parameterized by
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alpha, which sets the size of the disk, and sigma, which biases the gain variation toward gain
increase or decrease. (For details of this model, see “Stability Analysis Using Disk Margins”.)

diskmarginplot lets you plot the disk F or the region of gain and phase variations represented by
particular alpha,sigma pairs. For the syntax diskmarginplot(alpha,sigma), the disk size
alpha can be a vector. If alpha is a vector and sigma is a scalar, then the plot shows the regions
corresponding to the pairs alpha_k,sigma for each entry in alpha. If both alpha and sigma are
vectors, then the plot shows the regions for the pairs alpha1,sigma1;...;alphaN,sigmaN.

diskmarginplot enforces the relation alpha*abs(1+sigma) < 2. To convert between disk-based
gain margins and alpha, sigma parameterization, use dm2gm and gm2dm.

AX — Axes handle
axes object | UIAxes object

Axes handle, specified as an axes object or a UIaxes object. Use this argument to specify axes when
creating apps in “Develop Apps Using App Designer”.

References
[1] Seiler, Peter, Andrew Packard, and Pascal Gahinet. “An Introduction to Disk Margins [Lecture

Notes].” IEEE Control Systems Magazine 40, no. 5 (October 2020): 78–95.

See Also
getDGM | wcdiskmarginplot | diskmargin | diskmarginoptions | gm2dm | umargin

Topics
“Stability Analysis Using Disk Margins”

Introduced in R2020a
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dksyn
(Not recommended) Robust controller design for discrete-time plants using µ-synthesis

Note dksyn is not recommended. Use musyn instead. For more information, see “Compatibility
Considerations”.

Syntax
[k,clp,bnd] = dksyn(p,nmeas,ncont)

[k,clp,bnd] = dksyn(p,nmeas,ncont,opt)

[k,clp,bnd,dkinfo] = dksyn(p,nmeas,ncont,...)

[k,clp,bnd,dkinfo] = dksyn(p,nmeas,ncont,prevdkinfo,opt)

 [...] = dksyn(p)

Description
[k,clp,bnd] = dksyn(p,nmeas,ncont) synthesizes a robust controller k for the uncertain open-
loop plant model p via the D-K or D-G-K algorithm for µ-synthesis. p is an uncertain state-space uss
model. The last nmeas outputs and ncont inputs of p are assumed to be the measurement and
control channels. k is the controller, clp is the closed-loop model and bnd is the robust closed-loop
performance bound. p, k, clp, and bnd are related as follows:

        clp = lft(p,k); 
        bnd1 = dksynperf(clp); 
        bnd = 1/bnd1.LowerBound;

[k,clp,bnd] = dksyn(p,nmeas,ncont,opt) specifies user-defined options opt for the D-K or
D-K-G algorithm. Use dksynOptions to create opt.

[k,clp,bnd,dkinfo] = dksyn(p,nmeas,ncont,...) returns a log of the algorithm execution
in dkinfo. dkinfo is an N-by-1 cell array where N is the total number of iterations performed. The
ith cell contains a structure with the following fields:

Field Description
K Controller at ith iteration, a ss object
Bnds Robust performance bound on the closed-loop system (double)
DL Left D-scale, an ss object
DR Right D-scale, an ss object
GM Offset G-scale, an ss object
GR Right G-scale, an ss object
GFC Center G-scale, an ss object
MussvBnds Upper and lower µ bounds, an frd object
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Field Description
MussvInfo Structure returned from mussv at each iteration.

[k,clp,bnd,dkinfo] = dksyn(p,nmeas,ncont,prevdkinfo,opt) allows you to use
information from a previous dksyn iteration. prevdkinfo is a structure from a
previous attempt at designing a robust controller using dksyn. prevdkinfo is used when the dksyn
starting iteration is not 1 (opt.StartingIterationNumber = 1) to determine the correct D-
scalings to initiate the iteration procedure.

[...] = dksyn(p) takes p as a uss object that has two-input/two-output partitioning as defined by
mktito.

Examples
The following statements create a robust performance control design for an unstable, uncertain
single-input/single-output plant model. The nominal plant model, G, is an unstable first order system

s
s− 1 .

G = tf(1,[1 -1]); 

The model itself is uncertain. At low frequency, below 2 rad/s, it can vary up to 25% from its nominal
value. Around 2 rad/s the percentage variation starts to increase and reaches 400% at approximately
32 rad/s. The percentage model uncertainty is represented by the weight Wu which corresponds to
the frequency variation of the model uncertainty and the uncertain LTI dynamic object InputUnc.

Wu = 0.25*tf([1/2 1],[1/32 1]); 
InputUnc = ultidyn('InputUnc',[1 1]);

The uncertain plant model Gpert represents the model of the physical system to be controlled.

Gpert = G*(1+InputUnc*Wu); 

The robust stability objective is to synthesize a stabilizing LTI controller for all the plant models
parameterized by the uncertain plant model, Gpert. The performance objective is defined as a
weighted sensitivity minimization problem. The control interconnection structure is shown in the
following figure.

The sensitivity function, S, is defined as

S = 1
1 + PK
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where P is the plant model and K is the controller. A weighted sensitivity minimization problem
selects a weight Wp, which corresponds to the inverse of the desired sensitivity function of the closed-
loop system as a function of frequency. Hence the product of the sensitivity weight Wp and actual
closed-loop sensitivity function is less than 1 across all frequencies. The sensitivity weight Wp has a
gain of 100 at low frequency, begins to decrease at 0.006 rad/s, and reaches a minimum magnitude of
0.25 after 2.4 rad/s.

Wp = tf([1/4 0.6],[1 0.006]);

The defined sensitivity weight Wp implies that the desired disturbance rejection should be at least
100:1 disturbance rejection at DC, rise slowly between 0.006 and 2.4 rad/s, and allow the disturbance
rejection to increase above the open-loop level, 0.25, at high frequency.

When the plant model is uncertain, the closed-loop performance objective is to achieve the desired
sensitivity function for all plant models defined by the uncertain plant model, Gpert. The
performance objective for an uncertain system is a robust performance objective. A block diagram of
this uncertain closed-loop system illustrating the performance objective (closed-loop transfer function
from d→e) is shown.

From the definition of the robust performance control objective, the weighted, uncertain control
design interconnection model, which includes the robustness and performance objectives, can be
constructed and is denoted by P. The robustness and performance weights are selected such that if
the robust performance structure singular value, bnd, of the closed-loop uncertain system, clp, is
less than 1 then the performance objectives have been achieved for all the plant models in the model
set.

You can form the uncertain transfer matrix P from [d; u] to [e; y] using the following commands.

P = [Wp; 1 ]*[1 Gpert]; 
[K,clp,bnd] = dksyn(P,1,1); 
bnd

bnd = 
    0.6806 

The controller K achieves a robust performance µ value bnd of about 0.68. Therefore you have
achieved the robust performance objectives for the given problem.

You can use the robgain command to analyze the closed-loop robust performance of clp.

[rpmarg,rpmargunc] = robgain(clp,1); 

Limitations
There are two shortcomings of the D-K iteration control design procedure:
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• Calculation of the structured singular value µΔ(·) is approximated by its upper bound. This is not a
serious problem because the value of µ and its upper bound are often close.

• The D-K iteration is not guaranteed to converge to a global, or even local minimum. This is a
serious problem, and represents the biggest limitation of the design procedure.

In spite of these drawbacks, the D-K iteration control design technique appears to work well on many
engineering problems. It has been applied to a number of real-world applications with success. These
applications include vibration suppression for flexible structures, flight control, chemical process
control problems, and acoustic reverberation suppression in enclosures.

Algorithms
dksyn synthesizes a robust controller via D-K iteration. The D-K iteration procedure is an
approximation to µ-synthesis control design. The objective of µ-synthesis is to minimize the structure
singular value µ of the corresponding robust performance problem associated with the uncertain
system p. The uncertain system p is an open-loop interconnection containing known components
including the nominal plant model, uncertain parameters, ucomplex, and unmodeled LTI dynamics,
ultidyn, and performance and uncertainty weighting functions. You use weighting functions to
include magnitude and frequency shaping information in the optimization. The control objective is to
synthesize a stabilizing controller k that minimizes the robust performance µ value, which
corresponds to bnd.

The D-K iteration procedure involves a sequence of minimizations, first over the controller variable K
(holding the D variable associated with the scaled µ upper bound fixed), and then over the D variable
(holding the controller K variable fixed). The D-K iteration procedure is not guaranteed to converge to
the minimum µ value, but often works well in practice.

dksyn automates the D-K iteration procedure and the options object dksynOptions allows you to
customize its behavior. Internally, the algorithm works with the generalized scaled plant model P,
which is extracted from a uss object using the command lftdata.

The following is a list of what occurs during a single, complete step of the D-K iteration.

1 (In the first iteration, this step is skipped.) The µ calculation (from the previous step) provides a
frequency-dependent scaling matrix, Df. The fitting procedure fits these scalings with rational,
stable transfer function matrices. After fitting, plots of

σ D f ( jω)FL(P, K)( jω)Df
−1( jω)

and

σ D f ( jω)FL(P, K)( jω)D f
−1( jω)

are shown for comparison.

(In the first iteration, this step is skipped.) The rational D is absorbed into the open-loop
interconnection for the next controller synthesis. Using either the previous frequency-dependent
D's or the just-fit rational D , an estimate of an appropriate value for the H∞ norm is made. This
is simply a conservative value of the scaled closed-loop H∞ norm, using the most recent controller
and either a frequency sweep (using the frequency-dependent D's) or a state-space calculation
(with the rational D's).
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2 (The first iteration begins at this point.) A controller is designed using H∞ synthesis on the scaled
open-loop interconnection. If you set the DisplayWhileAutoIter field in dksynOptions to
'on', the following information is displayed:

a The progress of the γ-iteration is displayed.
b The singular values of the closed-loop frequency response are plotted.
c You are given the option to change the frequency range. If you change it, all relevant

frequency responses are automatically recomputed.
d You are given the option to rerun the H∞ synthesis with a set of modified parameters if you

set the AutoIter field in dksynOptions to 'off'. This is convenient if, for instance, the
bisection tolerance was too large, or if maximum gamma value was too small.

3 The structured singular value of the closed-loop system is calculated and plotted.
4 An iteration summary is displayed, showing all the controller order, as well as the peak value of µ

of the closed-loop frequency responses.
5 The choice of stopping or performing another iteration is given.

Subsequent iterations proceed along the same lines without the need to reenter the iteration number.
A summary at the end of each iteration is updated to reflect data from all previous iterations. This
often provides valuable information about the progress of the robust controller synthesis procedure.

Interactive Fitting of D-Scalings

Setting the AutoIter field in dksynOptions to 'off' requires that you interactively fit the D-
scales each iteration. During step 2 of the D-K iteration procedure, you are prompted to enter your
choice of options for fitting the D-scaling data. You press return after, the following is a list of your
options.

Enter Choice (return for list): 
  Choices:
        nd    Move to Next D-scaling
        nb    Move to Next D-Block
        i    Increment Fit Order
        d    Decrement Fit Order
        apf    Auto-PreFit
        mx 3    Change Max-Order to 3
        at 1.01    Change Auto-Prefit Tol to 1.01
        0    Fit with zeroth order
        2    Fit with second order
        n    Fit with n'th order
        e    Exit with Current Fittings
        s    See Status

• nd and nb allow you to move from one D-scale data to another. nd moves to the next scaling,
whereas nb moves to the next scaling block. For scalar D-scalings, these are identical operations,
but for problems with full D-scalings, (perturbations of the form δI) they are different. In the (1,2)
subplot window, the title displays the D-scaling block number, the row/column of the scaling that is
currently being fitted, and the order of the current fit (with d for data when no fit exists).

• You can increment or decrement the order of the current fit (by 1) using i and d.
• apf automatically fits each D-scaling data. The default maximum state order of individual D-

scaling is 5. The mx variable allows you to change the maximum D-scaling state order used in the
automatic prefitting routine. mx must be a positive, nonzero integer. at allows you to define how
close the rational, scaled µ upper bound is to approximate the actual µ upper bound in a norm
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sense. Setting at to 1 would require an exact fit of the D-scale data, and is not allowed. Allowable
values for at are greater than 1. This setting plays a role (mildly unpredictable, unfortunately) in
determining where in the (D,K) space the D-K iteration converges.

• Entering a positive integer at the prompt will fit the current D-scale data with that state order
rational transfer function.

• e exits the D-scale fitting to continue the D-K iteration.
• The variable s displays a status of the current and fits.

Compatibility Considerations
dksyn is not recommended
Warns starting in R2020a

The musyn command, introduced in R2019b, performs µ-synthesis with better numeric stability than
dksyn and yields better results for real uncertain parameters and for repeated parameters. musyn
can also design fixed-structure controllers. Therefore, it is recommended that you use musyn instead
of dksyn. Similarly, use musynOptions and musynperf instead of dksynOptions and dksynperf.
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See Also
dksynOptions | dksynperf | h2syn | hinfsyn | mktito | mussv | robstab | robgain | wcgain |
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Introduced before R2006a
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dksynOptions
(Not recommended) Set options for dksyn

Note dksynOptions is not recommended. Use musynOptions instead. For more information, see
“Compatibility Considerations”.

Syntax
opt = dksynOptions
opt = dksynOptions(Name,Value)

Description
opt = dksynOptions returns the default options for dksyn.

opt = dksynOptions(Name,Value) returns an option set with additional options specified by one
or more Name,Value pair arguments.

Input Arguments
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

dksynOptions takes the following Name arguments:

FrequencyVector

Frequencies for mu-analysis, specified as a vector. When empty, dksyn automatically chooses the
frequency range and number of points.

Default: []

InitialController

Controller for initializing first iteration, specified as a state-space (ss) model.

Default: []

AutoIter

Automated mu-synthesis mode, specified as either 'on' or 'off'. When automated mu-synthesis
mode is off, dksyn performs an interactive D-K iteration procedure. You are prompted to fit the D-
scale data and provide input on the control design process.

Default: 'on'
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DisplayWhileAutoIter

Status of display in automated mu-synthesis mode, specified as either 'off' or 'on'. When the
display is on, and automated mu-synthesis mode is active, dksyn displays the iteration progress
during the synthesis computation.

Default: 'off'

StartingIterationNumber

Iteration number for initiating iteration procedure, specified as a positive integer. Use this option
when you provide the prevdkinfo argument to dksyn to use information from a previous dksyn
calculation. In this case, specify the starting iteration number from which to resume the iteration
procedure.

Default: 1

NumberOfAutoIterations

Number of iterations to perform in automatic mu-synthesis mode, specified as a positive integer.

Default: 10

MixedMU

Flag indicating whether to perform mixed real/complex mu-synthesis when real parameters are
present, specified as either 'off' or 'on'. Mixed mu-synthesis accounts for uncertain real
parameters directly in the synthesis process. Setting 'MixedMU' to 'on' when you have uncertain
real parameters can result in improved robust performance of the synthesized controller.

Default: 'off'

AutoScalingOrder

State order for fitting D-scaling and G-scaling data for real/complex mu-synthesis, specified as a
vector of the form [dorder,gorder].

Default: [5 2] (5th-order D-scalings and 2nd-order G-scalings)

AutoIterSmartTerminate

Automatic termination mode, specified as either 'on' or 'off'. When AutoIterSmartTerminate
is 'on', the iteration procedure terminates based on the progress of the design iteration. Set the
tolerance for automatic termination using AutoIterSmartTerminateTol.

In automatic termination mode, the iteration procedure terminates when a stopping criterion is
satisfied. The stopping criterion involves the objective value (peak value, across frequency, of the
upper bound for µ) in the current iteration, denoted v0. The stopping criterion also involves the
objective value in the previous two iterations, denoted v–1 and v–2. The stopping criterion is satisfied
for lack of progress if:

v0− v−1 < AutoIterSmartTerminateTol * v0,

and

v−1− v−2 < AutoIterSmartTerminateTol * v0 .
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The stopping criteria is also satisfied for an undesirable significant increase in the objective value if:

v0 > v−1 + 20 * AutoIterSmartTerminateTol * v0 .

Default: 'on'

AutoIterSmartTerminateTol

Tolerance for AutoIterSmartTerminate mode.

Default: 0.005

Output Arguments
options

Option set containing the specified options for the dksyn command.

Examples

Create Options Set for dksyn

Create an options set for a dksyn run using a logarithmic distribution of frequency points for analysis
and performing 24 iterations.

options = dksynOptions('FrequencyVector',logspace(-2,3,80),...
                       'NumberOfAutoIterations',24);

Alternatively, use dot notation to set the values of options.

options = dksynOptions;
options.FrequencyVector = logspace(-2,3,80);
options.NumberOfAutoIterations = 24;

Compatibility Considerations
dksynOptions is not recommended
Not recommended starting in R2020a

The musyn command, introduced in R2019b, performs µ-synthesis with better numeric stability than
dksyn and yields better results for real uncertain parameters and for repeated parameters. musyn
can also design fixed-structure controllers. Therefore, it is recommended that you use musyn instead
of dksyn. Similarly, use musynOptions and musynperf instead of dksynOptions and dksynperf.

See Also
dksyn | musynOptions

Introduced in R2013a
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dksynperf
(Not recommended) Robust H∞ performance optimized by dksyn

Note dksynperf is not recommended. Use musynperf instead. For more information, see
“Compatibility Considerations”.

Syntax
[gamma,wcu] = dksynperf(clp)
[gamma,wcu] = dksynperf(clp,w)
[gamma,wcu] = dksynperf( ___ ,opts)
[gamma,wcu,info] = dksynperf( ___ )

Description
The robust H∞ performance (or robust H∞ norm) of an uncertain closed-loop system is the smallest
value γ such that the I/O gain of the system stays below γ for all modeled uncertainty up to size 1/γ
(in normalized units). The dksyn function synthesizes a robust controller by minimizing this quantity
over all possible choices of controller. dksynperf computes this quantity for a specified uncertain
model.

[gamma,wcu] = dksynperf(clp) calculates the robust H∞ performance for an uncertain closed-
loop system, clp. The robust H∞ performance is the smallest value γ for which the peak I/O gain
stays below γ for all modeled uncertainty up to 1/γ, in normalized units. For example, a value of γ =
1.125 implies the following:

• The I/O gain of clp remains less than 1.125 as long as the uncertain elements stay within 0.8
normalized units of their nominal values. In other words, for uncertain element values within 0.8
normalized units, the largest possible H∞ norm is 1.125.

• There is a perturbation of size 0.8 normalized units that drives the peak I/O gain to 1.125.

The peak I/O gain is the maximum I/O gain over all inputs, which is also the peak of the largest
singular value over all frequencies and uncertainties. In other words, if Δ represents all possible
values of the uncertain parameters in the closed-loop transfer function CLP(jω), then

γ = max
Δ

max
ω

σmax CLP jω .

The output structure gamma contains upper and lower bounds on the robust H∞ performance and the
critical frequency at which the I/O gain of clp reaches the lower bound. The structure wcu contains
the uncertain-element values that drive the peak I/O gain to the lower bound.

[gamma,wcu] = dksynperf(clp,w) computes the robust H∞ performance at the frequencies
specified by w.

• If w is a cell array of the form {wmin,wmax}, then dksynperf restricts the computation to the
interval between wmin and wmax.

• If w is a vector of frequencies, then dksynperf computes the H∞ performance at the specified
frequencies only.
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[gamma,wcu] = dksynperf( ___ ,opts) specifies additional options for the computation. Use
robOptions to create opts. You can use this syntax with any of the previous input-argument
combinations.

[gamma,wcu,info] = dksynperf( ___ ) returns a structure with additional information about the
H∞ performance values and the perturbations that drive the I/O gain to γ. See info for details about
this structure. You can use this syntax with any of the previous input-argument combinations.

Examples

Reduce Synthesized Controller While Preserving Robust Performance

When you use dksyn to synthesize an unstructured robust controller, the resulting controller often is
of higher order than is necessary to achieve the desired robust performance. One way to mitigate this
problem is to perform model reduction, using dksynperf to test the robust performance of the
reduced-order controller.

Synthesize a controller for the system described in the dksyn example.

G = tf(1,[1 -1]); 
Wu = 0.25*tf([1/2 1],[1/32 1]); 
InputUnc = ultidyn('InputUnc',[1 1]);
Gpert = G*(1+InputUnc*Wu); 
Wp = tf([1/4 0.6],[1 0.006]);
P = [Wp; 1 ]*[1 Gpert]; 

[K,clp,clperf] = dksyn(P,1,1); 
N = order(K)

N = 7

dksyn returns a 7th-order controller, the closed-loop system with that controller, clp, and the robust
H∞ performance of that system, clperf. Compute reduced-order controllers for orders ranging from
1 to 7.

Kred = reduce(K,1:N);

Find the lowest-order controller Klow with performance no worse than 1.05*clperf, or 5%
degradation compared to the full-order controller.

for k=1:N
   Klow = Kred(:,:,k);
   clp = lft(P,Klow);
   [gamma,~] = dksynperf(clp);
   if gamma.UpperBound < 1.05*clperf
      break
   end
end 
order(Klow)

ans = 3

To validate the reduced-order controller, compare the robust H∞ performance of the system using the
simplified controller with that of the system using the full-order controller. The latter value is
clperf, returned by dksyn when synthesizing the controller.
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clplow = lft(P,Klow);
dksynperf(clplow)

ans = struct with fields:
           LowerBound: 0.7116
           UpperBound: 0.7131
    CriticalFrequency: 0.7408

clperf

clperf = 0.6816

The third-order controller achieves almost the same robust H∞ performance as the 7th-order
controller returned by dksyn.

Input Arguments
clp — Closed-loop uncertain system
uss | ufrd | genss | genfrd

Closed-loop uncertain system, specified as a uss, ufrd, genss, or genfrd model that contains
uncertain elements. For genss or genfrd models, dksynperf uses the current value of any tunable
blocks and folds them into the known (not uncertain) part of the model.

w — Frequencies
{wmin,wmax} | vector

Frequencies at which to compute robust H∞ performance, specified as the cell array {wmin,wmax} or
as a vector of frequency values.

• If w is a cell array of the form {wmin,wmax}, then the function computes the H∞ performance at
frequencies ranging between wmin and wmax.

• If w is a vector of frequencies, then the function computes the H∞ performance at each specified
frequency. For example, use logspace to generate a row vector with logarithmically spaced
frequency values.

Specify frequencies in units of rad/TimeUnit, where TimeUnit is the TimeUnit property of the
model.

opts — Options for H∞ performance computation
robOptions object

Options for computation of robust H∞ performance, specified as an object you create with
robOptions. The available options include settings that let you:

• Extract frequency-dependent H∞ performance values.
• Examine the sensitivity of the H∞ performance to each uncertain element.
• Improve the results of the calculation by setting certain options for the underlying mussv

calculation. In particular, setting the option 'MussvOptions' to 'mN' can reduce the gap
between the lower bound and upper bound. N is the number of restarts.

For more information about all available options, see robOptions.
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Example: robOptions('Sensitivity','on','MussvOptions','m3')

Output Arguments
gamma — Robust H∞ performance and critical frequency
structure

Robust H∞ performance and critical frequency, returned as a structure containing the following fields:

Field Description
LowerBound Lower bound on the actual robust H∞ performance γ,

returned as a scalar value. The exact value of γ is
guaranteed to be no smaller than LowerBound. In other
words, there exist some uncertain-element values of
magnitude 1/LowerBound for which the I/O gain of clp
reaches LowerBound. The function returns one such
instance in wcu.

UpperBound Upper bound on the actual robust H∞ performance,
returned as a scalar value. The exact value is guaranteed
to be no larger than UpperBound. In other words, for all
modeled uncertainty with normalized magnitude up to 1/
UpperBound, the peak I/O gain of clp is less than
UpperBound.

CriticalFrequency Frequency at which the I/O gain reaches LowerBound, in
rad/TimeUnit, where TimeUnit is the TimeUnit
property of clp.

Use normalized2actual to convert the normalized uncertainty values 1/LowerBound or 1/
UpperBound to actual deviations from nominal values.

wcu — Perturbations driving I/O gain to gamma.LowerBound
structure

Perturbations driving I/O gain to gamma.LowerBound, returned as a structure whose fields are the
names of the uncertain elements of clp. Each field contains the actual value of the corresponding
uncertain element. For example, if clp includes an uncertain matrix M and SISO uncertain dynamics
delta, then wcu.M is a numeric matrix and wcu.delta is a SISO state-space model.

Use usubs(clp,wcu) to substitute these values for the uncertain elements in clp and obtain the
corresponding dynamic system. This system has peak gain gamma.LowerBound.

Use actual2normalized to convert these actual uncertainty values to the normalized units in
which 1/gamma.LowerBound or 1/gamma.UpperBound are expressed.

info — Additional information about γ values
structure

Additional information about the γ values, returned as a structure with the following fields:
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Field Description
Frequency Frequency points at which dksynperf returns γ values,

returned as a vector.

• If the 'VaryFrequency' option of robOptions is
'off', then info.Frequency is the critical frequency,
the frequency at which the I/O gain reaches
gamma.LowerBound. If the smallest lower bound and
the smallest upper bound on γ occur at different
frequencies, then info.Frequency is a vector
containing these two frequencies.

• If the 'VaryFrequency' option of robOptions is
'on', then info.Frequency contains the frequencies
selected by dksynperf. These frequencies are
guaranteed to include the frequency at which the peak
gain occurs.

• If you specify a vector of frequencies w at which to
compute γ, then info.Frequency = w. When you
specify a frequency vector, these frequencies are not
guaranteed to include the frequency at which the peak
gain occurs.

The 'VaryFrequency' option is meaningful only for uss
and genss models. dksynperf ignores the option for ufrd
and genfrd models.

Bounds Lower and upper bounds on the actual γ values, returned as
an array. info.Bounds(:,1) contains the lower bound at
each corresponding frequency in info.Frequency, and
info.Bounds(:,2) contains the corresponding upper
bounds.

WorstPerturbation Smallest perturbations at each frequency point in
info.Frequency, returned as a structure array. The fields
of info.WorstPerturbation are the names of the
uncertain elements in clp. Each field contains the value of
the corresponding element that drives the I/O gain to the
corresponding lower bound at each frequency. For example,
if clp includes an uncertain parameter p and SISO
uncertain dynamics delta, then
info.WorstPerturbation.p is a collection of numeric
values and info.WorstPerturbation.delta is a
collection of SISO state-space models.
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Field Description
Sensitivity Sensitivity of γ to each uncertain element, returned as a

structure when the 'Sensitivity' option of robOptions
is 'on'. The fields of info.Sensitivity are the names of
the uncertain elements in clp. Each field contains a
percentage that measures how much the uncertainty in the
corresponding element affects γ. For example, if
info.Sensitivity.p is 50, then a given fractional
change in the uncertainty range of p causes half as much
fractional change in γ.

If the 'Sensitivity' option of robOptions is off (the
default setting), then info.Sensitivity is NaN.

Compatibility Considerations
dksynperf is not recommended
Not recommended starting in R2020a

The musynperf command, introduced in R2019b, computes robust H∞ performance with better
numeric stability than dksynperf and yields better results for real uncertain parameters and for
repeated parameters. Therefore, it is recommended that you use musynperf instead of dksynperf.

See Also
dksyn | robgain | robOptions | robstab | normalized2actual | actual2normalized | wcgain
| musynperf

Introduced in R2017a
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dm2gm
Get disk-based margins from disk size and skew

Syntax
[GM,PM] = dm2gm(alpha)
[DGM,DPM] = dm2gm(alpha,sigma)

Description
umargin and diskmargin model gain and phase variation as a multiplicative factor F(s) taking
values in a disk centered on the real axis. The disk is described by two parameters: ɑ, which sets the
size of the variation, and σ, or skew, which biases the gain variation toward increase or decrease.
(See “Algorithms” on page 1-109 for more details about this model.) The disk can alternatively be
described by its real-axis intercepts DGM = [gmin,gmax], which represent the relative amount of
gain variation around the nominal value F = 1. Use gm2dm and dm2gm to convert between the ɑ,σ
values and the disk-based gain margin DGM = [gmin,gmax] that describe the same disk.

[GM,PM] = dm2gm(alpha) returns the gain and phase variations modeled by the disk with disk-size
alpha and zero skew. The disk represents a gain that can vary between 1/GM and GM times the
nominal value, and a phase that can vary by ±PM degrees. If alpha is a vector, the function returns
GM and PM for each entry in the vector.

[DGM,DPM] = dm2gm(alpha,sigma) returns the disk-based gain variation DGM and disk-based
phase variation DPM corresponding to the disk parameterized by alpha and sigma. DPM is a vector of
the form [gmin,gmax], and DPM is a vector of the form [-pm,pm] corresponding to the disk size
alpha and skew sigma. If alpha and sigma are vectors, then the function returns the ranges for the
pairs alpha1,sigma1;...;alphaN,sigmaN.

Examples

Gain and Phase Variations Corresponding to Given Disk Size

Determine disk-based gain and phase variations captured by a disk with size α = 0.5.

alpha = 0.5;
[GM,PM] = dm2gm(alpha)

GM = 1.6667

PM = 28.0725

When you omit sigma, the dm2gm command returns the gain and phase variations corresponding to α
with zero skew. Zero skew means that the disk represents gain that can increase or decrease by the
same amount. In this case, α = 0.5 models a gain that can increase or decrease by up to a factor
1.6667 of its nominal value. The phase variation corresponding to this disk-based gain variation is
±28°. Visualize this disk.

diskmarginplot(alpha,0,'disk')
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The plot shows the values of F in complex plane corresponding to disk size alpha = 0.5 and sigma =
0. You can see that DGM = [1/GM,GM] for this disk.

Disk-Based Margins Corresponding to Disk Size and Skew

Determine the disk-based gain and phase variations modeled by the disk parameterized by disk size α
= 0.6 and skew σ = 0.75.

alpha = 0.6;
sigma = 0.75;
[DGM,DPM] = dm2gm(alpha,sigma)

DGM = 1×2

    0.6066    2.2632

DPM = 1×2

  -34.2267   34.2267

Visualize the gain and phase variations represented by this disk.

diskmarginplot(DGM)
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Because σ > 0, this disk models a gain that can increase more than it can decrease relative to the
nominal value.

Effect of Skew on Modeled Gain and Phase Variations

Determine the disk-based gain and phase variations represented by disks of the same size but with
different skews.

alpha = 0.75;
sigma = [-0.5;0;0.5];
[DGM,DPM] = dm2gm(alpha,sigma)

DGM = 3×2

    0.3684    1.9231
    0.4545    2.2000
    0.5200    2.7143

DPM = 3×2

  -41.7908   41.7908
  -41.1121   41.1121
  -41.7908   41.7908
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The disks capture roughly similar phase variations, but the skew biases the disk toward gain decrease
or increase. For the disk with zero skew, the gain variation is balanced, and meaning that gain can
increase or decrease by the same amount. To Visualize the simultaneous range of gain and phase
variations corresponding to each row in DGM.

diskmarginplot(DGM)

Input Arguments
alpha — Size of gain and phase variation
scalar | vector

Disk size, specified as a scalar or vector. Disk-based gain-margin analysis represents gain and phase
variation as a multiplicative uncertainty F, which is a disk of values containing F = 1, corresponding
to the nominal value of the system. The disk is parameterized by alpha, which sets the size of the
disk, and sigma, which biases the gain variation toward gain increase or decrease. See “Algorithms”
on page 1-109 for details about the meaning of alpha.

To obtain gain and phase variations corresponding to multiple disk sizes, specify alpha as a vector.

sigma — Skew
real scalar | vector

Skew, specified as a scalar or vector. The skew biases the modeled gain variation toward gain
increase or decrease.
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• sigma = 0 for a balanced gain range [gmin,gmax], with gmin = 1/gmax.
• sigma is positive for a varying gain that can increase more than it can decrease, gmax > 1/

gmin.
• sigma is negative for a varying gain that can decrease more than it can increase, gmin < 1/

gmax.

The more the gain range is biased, the larger the absolute value of sigma. For additional details
about the meaning of sigma, see “Algorithms” on page 1-109.

To obtain gain and phase variations corresponding to multiple disks of varying skew, specify sigma as
a vector.

Output Arguments
GM — Amount of gain increase or decrease
scalar | column vector

Amount of gain increase or decrease in absolute units, returned as a real scalar or a vector.

• If alpha is a real scalar and you omit sigma, then dm2gm returns a scalar GM such that the disk of
size alpha models a symmetric gain variation in the range [1/GM,GM] and the corresponding
phase variation, [-PM,PM]. For instance, GM = 2 means that the disk models a gain that can
increase or decrease by a factor of 2.

• If alpha is a vector of form [alpha1;...;alphaN] and you omit sigma, the function returns GM
as a column vector of the corresponding amounts of gain increase or decrease.

PM — Amount of phase variation
scalar | column vector

Amount of phase variation in degrees, returned as a real scalar or a vector.

• If alpha is a real scalar and you omit sigma, then dm2gm returns a scalar PM such that the disk of
size alpha models a symmetric gain variation in the range [1/GM,GM] and the corresponding
phase variation, [-PM,PM]. For instance, PM = 20 means that the disk models a phase that can
increase or decrease by 20°.

• If alpha is a vector of form [alpha1;...;alphaN] and you omit sigma, the function returns PM
as a column vector of the corresponding amounts of phase variation.

DGM — Range of relative gain variation
two-element vector | two-column matrix

Range of relative gain variation, returned as a two-element vector of the form [gmin,gmax], where
gmin < 1 and gmax > 1. For instance, DGM = [0.8 1.5] represents a gain that can vary between
80% and 150% of its nominal value (that is, change by a factor between 0.8 and 1.5). DGM is the gain
variation modeled by the disk parameterized by the input arguments alpha and sigma. It is the
range in which the disk crosses the real axis. gmin can be negative for large negative values of
sigma, defining a range of relative gain variation that includes a change in sign. For more
information about the disk-based uncertainty model, see “Algorithms” on page 1-109.

You can use DGM to create a umargin object that represents the gain and phase uncertainty
described by the disk. You can visualize the disk and the associated gain and phase variations using
diskmarginplot.
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If alpha and sigma are vectors, then DGM is a two-column matrix of the form
[gmin1,gmax1; ...;gminN,gmaxN], where each row is the disk-based gain range corresponding
to [alpha1,sigma1; ...;alphaN,sigmaN].

DPM — Disk-based phase variation
two-element vector | two-column matrix

Disk-based phase variation, returned as a two-element vector or a two-column matrix.

The vector DPM = [-pm,pm], represents the relative phase variation amount determined by the
geometry of the disk described by alpha and sigma. For more information, see “Algorithms” on page
1-109.

If alpha and sigma are vectors, then DPM is a two-column matrix of the form [-pm1,pm1; ...;-
pmN,pmN], where each row is the phase variation corresponding to
[alpha1,sigma1; ...;alphaN,sigmaN].

Algorithms
umargin and diskmargin model gain and phase variations in an individual feedback channel as a
frequency-dependent multiplicative factor F(s) multiplying the nominal open-loop response L(s), such
that the perturbed response is L(s)F(s). The factor F(s) is parameterized by:

F s = 1 + α 1− σ /2 δ s
1− α 1 + σ /2 δ s .

In this model,

• δ(s) is a gain-bounded dynamic uncertainty, normalized so that it always varies within the unit disk
(||δ||∞ < 1).

• ɑ sets the amount of gain and phase variation modeled by F. For fixed σ, the parameter ɑ controls
the size of the disk. For ɑ = 0, the multiplicative factor is 1, corresponding to the nominal L.

• σ, called the skew, biases the modeled uncertainty toward gain increase or gain decrease.

The factor F takes values in a disk centered on the real axis and containing the nominal value F = 1.
The disk is characterized by its intercept DGM = [gmin,gmax] with the real axis. gmin < 1 and
gmin > 1 are the minimum and maximum relative changes in gain modeled by F, at nominal phase.
The phase uncertainty modeled by F is the range DPM = [-pm,pm] of phase values at the nominal
gain (|F| = 1). For instance, in the following plot, the right side shows the disk F that intersects the
real axis in the interval [0.71,1.4]. The left side shows that this disk models a gain variation of ±3 dB
and a phase variation of ±19°.

DGM = [0.71,1.4]
F = umargin('F',DGM)
plot(F)
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gm2dm and gm2dm converts between these two ways of specifying a disk of multiplicative gain and
phase uncertainty: a gain-variation range of the form DGM = [gmin,gmax], and the ɑ,σ
parameterization of the corresponding disk.

For further details about the uncertainty model for gain and phase variations, see “Stability Analysis
Using Disk Margins”.

See Also
diskmargin | diskmarginplot | gm2dm | umargin | wcdiskmargin

Introduced in R2020a
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dmplot
(Not recommended) Interpret disk gain and phase margins

Note dmplot is not recommended. Use diskmarginplot instead.

Syntax
dmplot

dmplot(diskgm)

[dgm,dpm] = dmplot

Description
dmplot brings up a plot that illustrates the disk gain margin (dgm) and disk phase margin (dpm) for a
sample system. Both margins are derived from the largest disk that

• Contains the critical point (–1,0)
• Does not intersect the Nyquist plot of the open-loop response L

diskgm is the radius of this disk and a lower bound on the classical gain margin.

dmplot(diskgm) plots the maximum allowable phase variation as a function of the actual gain
variation for a given disk gain margin diskgm (the maximum gain variation being diskgm). The
closed-loop system is guaranteed to remain stable for all combined gain/phase variations inside the
plotted ellipse.

[dgm,dpm] = dmplot returns the data used to plot the gain/phase variation ellipse.

Examples

Disk Gain and Phase Margins

When you call dmplot without an argument, the resulting plot and text shows a comparison of a disk
margin analysis with the classical notations of gain and phase margins. The Nyquist plot is of the loop
transfer function L(s):

L(s) =
s

30 + 1
(s + 1)(s2 + 1 . 6s + 16)

.

dmplot

                                                         
This figure shows a comparison of a disk margin analysis 
with the classical notations of gain and phase margins.  
The Nyquist plot is of the loop transfer function        
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         L = 4(s/30 + 1)/((s+1)*(s^2 + 1.6s + 16))       
                                                         
 - The Nyquist plot of L corresponds to the blue line    
 - The unit disk corresponds to the dotted red line      
 - GM and PM indicate the location of the classical gain 
    and phase margins for the system L.                  
 - DGM and DPM correspond to the disk gain and phase     
   margins. The disk margins provide a lower bound on    
   classical gain and phase margins.                     
 - The disk margin circle corresponds to the dashed black
   line. The disk margin corresponds to the largest disk 
   centered at (GMD + 1/GMD)/2 that just touches the     
   loop transfer function L. This location is indicated  
   by the red dot.                                       

The x-axis corresponds to the gain variation in dB and the y-axis corresponds to the allowable phase
variation in degrees. For a disk gain margin corresponding to 3 dB (1.414), the closed-loop system is
stable for all phase and gain variations inside the blue ellipse. For example, the closed-loop system
can simultaneously tolerate +/– 2 dB gain variation and +/– 14 deg phase variations. To see the
allowable variations for a given disk gain margin, use the given value as an input to dmplot.
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figure           % new figure window
dmplot(1.414)

Compatibility Considerations
dmplot is not recommended
Not recommended starting in R2020a

dmplot is not recommended. Use diskmarginplot instead.

References
Barrett, M.F., Conservatism with robustness tests for linear feedback control systems, Ph.D. Thesis.
Control Science and Dynamical Systems, University of Minnesota, 1980.

Blight, J.D., R.L. Dailey, and Gangsass, D., “Practical control law design for aircraft using
multivariable techniques,” International Journal of Control, Vol. 59, No. 1, 1994, 93-137.

Bates, D., and I. Postlethwaite, Robust Multivariable Control of Aerospace Systems, Delft University
Press, Delft, The Netherlands, ISBN: 90-407-2317-6, 2002.

See Also
wcdiskmargin
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evallmi
Given particular instance of decision variables, evaluate all variable terms in system of LMIs

Syntax
evalsys = evallmi(lmisys,decvars)

Description
evallmi evaluates all LMI constraints for a particular instance decvars of the vector of decision
variables. Recall that decvars fully determines the values of the matrix variables X1, . . ., XK. The
“evaluation” consists of replacing all terms involving X1, . . ., XK by their matrix value. The output
evalsys is an LMI system containing only constant terms.

The function evallmi is useful for validation of the LMI solvers' output. The vector returned by these
solvers can be fed directly to evallmi to evaluate all variable terms. The matrix values of the left and
right sides of each LMI are then returned by showlmi.

Observation
evallmi is meant to operate on the output of the LMI solvers. To evaluate all LMIs for particular
instances of the matrix variables X1, . . ., XK, first form the corresponding decision vector x with
mat2dec and then call evallmi with x as input.

Examples
Consider the feasibility problem of finding X > 0 such that

ATXA – X + I < 0

where

A =
0.5 −0.2
0.1 −0.7

.

This LMI system is defined by:

setlmis([]) 
X = lmivar(1,[2 1])     % full symmetric X

lmiterm([1 1 1 X],A',A)     % LMI #1: A'*X*A 
lmiterm([1 1 1 X],-1,1)         % LMI #1: -X 
lmiterm([1 1 1 0],1)     % LMI #1: I 
lmiterm([-2 1 1 X],1,1)     % LMI #2: X 
lmis = getlmis

To compute a solution xfeas, call feasp by

[tmin,xfeas] = feasp(lmis)

The result is
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tmin = 
    -4.7117e+00

xfeas' = 
    1.1029e+02      -1.1519e+01      1.1942e+02

The LMI constraints are therefore feasible since tmin < 0. The solution X corresponding to the
feasible decision vector xfeas would be given by X = dec2mat(lmis,xfeas,X).

To check that xfeas is indeed feasible, evaluate all LMI constraints by typing

evals = evallmi(lmis,xfeas)

The left and right sides of the first and second LMIs are then given by

[lhs1,rhs1] = showlmi(evals,1) 
[lhs2,rhs2] = showlmi(evals,2)

and the test

eig(lhs1-rhs1)
ans = 
    -8.2229e+01 
    -5.8163e+01

confirms that the first LMI constraint is satisfied by xfeas.

See Also
showlmi | setmvar | dec2mat | mat2dec

Introduced before R2006a
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feasp
Compute solution to given system of LMIs

Syntax
[tmin,xfeas] = feasp(lmisys,options,target)

Description
[tmin,xfeas] = feasp(lmisys,options,target) computes a solution xfeas (if any) of the
system of LMIs described by lmisys. The vector xfeas is a particular value of the decision variables
for which all LMIs are satisfied.

Given the LMI system

NTLxN ≤ MTR(x)M,  (1-3)

xfeas is computed by solving the auxiliary convex program:

Minimize t subject to NTL(x)N–MTR(x)M≤tI.

The global minimum of this program is the scalar value tmin returned as first output argument by
feasp. The LMI constraints are feasible if tmin ≤ 0 and strictly feasible if tmin < 0. If the problem
is feasible but not strictly feasible, tmin is positive and very small. Some post-analysis may then be
required to decide whether xfeas is close enough to feasible.

The optional argument target sets a target value for tmin. The optimization code terminates as
soon as a value of t below this target is reached. The default value is target = 0.

Note that xfeas is a solution in terms of the decision variables and not in terms of the matrix
variables of the problem. Use dec2mat to derive feasible values of the matrix variables from xfeas.

Control Parameters
The optional argument options gives access to certain control parameters for the optimization
algorithm. This five-entry vector is organized as follows:

• options(1) is not used.
• options(2) sets the maximum number of iterations allowed to be performed by the optimization

procedure (100 by default).
• options(3) resets the feasibility radius. Setting options(3) to a value R > 0 further constrains

the decision vector x = (x1, . . ., xN) to lie within the ball

∑
i = 1

N
xi

2 < R2

In other words, the Euclidean norm of xfeas should not exceed R. The feasibility radius is a
simple means of controlling the magnitude of solutions. Upon termination, feasp displays the f-
radius saturation, that is, the norm of the solution as a percentage of the feasibility radius R.
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The default value is R = 109. Setting options(3) to a negative value activates the “flexible
bound” mode. In this mode, the feasibility radius is initially set to 108, and increased if necessary
during the course of optimization

• options(4) helps speed up termination. When set to an integer value J > 0, the code terminates
if t did not decrease by more than one percent in relative terms during the last J iterations. The
default value is 10. This parameter trades off speed vs. accuracy. If set to a small value (< 10), the
code terminates quickly but without guarantee of accuracy. On the contrary, a large value results
in natural convergence at the expense of a possibly large number of iterations.

• options(5) = 1 turns off the trace of execution of the optimization procedure. Resetting
options(5) to zero (default value) turns it back on.

Setting option(i) to zero is equivalent to setting the corresponding control parameter to its default
value. Consequently, there is no need to redefine the entire vector when changing just one control
parameter. To set the maximum number of iterations to 10, for instance, it suffices to type

options=zeros(1,5)       % default value for all parameters 
options(2)=10

Memory Problems
When the least-squares problem solved at each iteration becomes ill conditioned, the feasp solver
switches from Cholesky-based to QR-based linear algebra (see “Memory Problems” on page 1-325 for
details). Since the QR mode typically requires much more memory, MATLAB® may run out of memory
and display the message

??? Error using ==> feaslv 
Out of memory. Type HELP MEMORY for your options.

You should then ask your system manager to increase your swap space or, if no additional swap space
is available, set options(4) = 1. This will prevent switching to QR and feasp will terminate when
Cholesky fails due to numerical instabilities.

Examples

Solve System of LMIs

Consider the problem of finding P > I such that:

A1
TP + PA1 < 0,

A2
TP + PA2 < 0,

A3
TP + PA3 < 0,

with data

A1 =
−1 2
1 −3

, A2 =
−0 . 8 1 . 5
1 . 3 −2 . 7

, A3 =
−1 . 4 0 . 9
0 . 7 −2 . 0

.

This problem arises when studying the quadratic stability of the polytope of the matrices,
Co A1, A2, A3 .
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To assess feasibility using feasp, first enter the LMIs.

setlmis([]) 
p = lmivar(1,[2 1]);

A1 = [-1 2;1 -3];
A2 = [-0.8 1.5; 1.3 -2.7];
A3 = [-1.4 0.9;0.7 -2.0];

lmiterm([1 1 1 p],1,A1,'s');     % LMI #1 
lmiterm([2 1 1 p],1,A2,'s');     % LMI #2 
lmiterm([3 1 1 p],1,A3,'s');     % LMI #3 
lmiterm([-4 1 1 p],1,1);         % LMI #4: P 
lmiterm([4 1 1 0],1);            % LMI #4: I 
lmis = getlmis;

Call feasp to a find a feasible decision vector.

[tmin,xfeas] = feasp(lmis);

 Solver for LMI feasibility problems L(x) < R(x)
    This solver minimizes  t  subject to  L(x) < R(x) + t*I
    The best value of t should be negative for feasibility

 Iteration   :    Best value of t so far 
 
     1                        0.972718
     2                        0.870460
     3                       -3.136305

 Result:  best value of t:    -3.136305
          f-radius saturation:  0.000% of R =  1.00e+09
 

The result tmin = -3.1363 means that the problem is feasible. Therefore, the dynamical system
ẋ = A t x is quadratically stable for A t ∈ Co A1, A2, A3 .

To obtain a Lyapunov matrix P proving the quadratic stability, use dec2mat.

P = dec2mat(lmis,xfeas,p)

P = 2×2

  270.8553  126.3999
  126.3999  155.1336

It is possible to add further constraints on this feasibility problem. For instance, the following
command bounds the Frobenius norm of P by 10 while asking tmin to be less than or equal to –1.

options = [0,0,10,0,0];
[tmin,xfeas] = feasp(lmis,options,-1);

 Solver for LMI feasibility problems L(x) < R(x)
    This solver minimizes  t  subject to  L(x) < R(x) + t*I
    The best value of t should be negative for feasibility

 Iteration   :    Best value of t so far 
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     1                        0.988505
     2                        0.872239
     3                       -0.476638
     4                       -0.920574
     5                       -0.920574
***                 new lower bound:    -3.726964
     6                       -1.011130
***                 new lower bound:    -1.602398

 Result:  best value of t:    -1.011130
          f-radius saturation:  91.385% of R =  1.00e+01
 

The third entry of options sets the feasibility radius to 10 while the third argument to feasp, -1,
sets the target value for tmin. This constraint yields tmin = -1.011 and a matrix P with largest
eigenvalue λmax P  = 8.4653.

P = dec2mat(lmis,xfeas,p);
e = eig(P)

e = 2×1

    3.8875
    8.4653

References
The feasibility solver feasp is based on Nesterov and Nemirovski's Projective Method described in:

Nesterov, Y., and A. Nemirovski, Interior Point Polynomial Methods in Convex Programming: Theory
and Applications, SIAM, Philadelphia, 1994.

Nemirovski, A., and P. Gahinet, “The Projective Method for Solving Linear Matrix Inequalities,” Proc.
Amer. Contr. Conf., 1994, Baltimore, Maryland, p. 840–844.

The optimization is performed by the C-MEX file feaslv.mex.

See Also
mincx | gevp | dec2mat

Introduced before R2006a
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fitfrd
Fit frequency response data with state-space model

Syntax
B = fitfrd(A,N)

B = fitfrd(A,N,RD)

B = fitfrd(A,N,RD,WT)

Description
B = fitfrd(A,N) is a state-space object with state dimension N, where A is an frd object and N is
a nonnegative integer. The frequency response of B closely matches the D-scale frequency response
data in A.

A must have either 1 row or 1 column, although it need not be 1-by-1. B will be the same size as A. In
all cases, N should be a nonnegative scalar.

B = fitfrd(A,N,RD) forces the relative degree of B to be RD. RD must be a nonnegative integer.
The default value for RD is 0. If A is a row (or column) then RD can be a vector of the same size as
well, specifying the relative degree of each entry of B. If RD is a scalar, then it specifies the relative
degree for all entries of B. You can specify the default value for RD by setting RD to an empty matrix.

B = fitfrd(A,N,RD,WT) uses the magnitude of WT to weight the optimization fit criteria. WT can
be a double, ss or frd. If WT is a scalar, then it is used to weight all entries of the error criteria
(A-B). If WT is a vector, it must be the same size as A, and each individual entry of WT acts as a
weighting function on the corresponding entry of (A-B).

Examples

Fit D-scale Data

Use the fitfrd command to fit D-scale data.

Create D-scale frequency response data from a fifth-order system.

sys = tf([1 2 2],[1 2.5 1.5])*tf(1,[1 0.1]); 
sys = sys*tf([1 3.75 3.5],[1 2.5 13]); 
omeg = logspace(-1,1); 
sysg = frd(sys,omeg); 
bode(sysg,'r-');
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You can try to fit the frequency response D-scale data sysg with a first-order system, b1. Similarly,
you can fit the D-scale data with a third-order system, b3.

b1 = fitfrd(sysg,1); 
b3 = fitfrd(sysg,3);

Compare the original D-scale data sysg with the frequency responses of the first and third-order
models calculated by fitfrd.

b1g = frd(b1,omeg); 
b3g = frd(b3,omeg); 
bode(sysg,'r-',b1g,'k:',b3g,'b-.')
legend('5th order system','1st order fit','3rd order fit','Location','Southwest')
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Limitations
Numerical conditioning problems arise if the state order of the fit N is selected to be higher than
required by the dynamics of A.

See Also
fitmagfrd

Introduced before R2006a
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fitmagfrd
Fit frequency response magnitude data with minimum-phase state-space model using log-Chebyshev
magnitude design

Syntax
B = fitmagfrd(A,N)

B = fitmagfrd(A,N,RD)

B = fitmagfrd(A,N,RD,WT)

B = fitmagfrd(A,N,RD,WT,C)

Description
B = fitmagfrd(A,N) is a stable, minimum-phase ss object, with state-dimension N, whose
frequency response magnitude closely matches the magnitude data in A. A is a 1-by-1 frd object, and
N is a nonnegative integer.

B = fitmagfrd(A,N,RD) forces the relative degree of B to be RD. RD must be a nonnegative
integer whose default value is 0. You can specify the default value for RD by setting RD to an empty
matrix.

B = fitmagfrd(A,N,RD,WT) uses the magnitude of WT to weight the optimization fit criteria. WT
can be a double, ss or frd. If WT is a scalar, then it is used to weight all entries of the error criteria
(A-B). If WT is a vector, it must be the same size as A, and each individual entry of WT acts as a
weighting function on the corresponding entry of (A-B). The default value for WT is 1, and you can
specify it by setting WT to an empty matrix.

B = fitmagfrd(A,N,RD,WT,C) enforces additional magnitude constraints on B, specified by the
values of C.LowerBound and C.UpperBound. These can be empty, double or frd (with
C.Frequency equal to A.Frequency). If C.LowerBound is non-empty, then the magnitude of B is
constrained to lie above C.LowerBound. No lower bound is enforced at frequencies where
C.LowerBound is equal to -inf. Similarly, the UpperBound field can be used to specify an upper
bound on the magnitude of B. If C is a double or frd (with C.Frequency equal to A.Frequency),
then the upper and lower bound constraints on B are taken directly from A as:

• if C(w) == –1, then enforce abs(B(w)) <= abs(A(w))
• if C(w) == 1, then enforce abs(B(w)) >= abs(A(w))
• if C(w) == 0, then no additional constraint

where w denotes the frequency.

Examples

Fit Frequency Response Data With Stable Minimum-Phase State-Space Model

Create frequency response magnitude data from a fifth-order system.
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sys = tf([1 2 2],[1 2.5 1.5])*tf(1,[1 0.1]); 
sys = sys*tf([1 3.75 3.5],[1 2.5 13]); 
omega = logspace(-1,1); 
sysg = abs(frd(sys,omega)); 
bodemag(sysg,'r');

Fit the magnitude data with a minimum-phase, stable third-order system.

ord = 3; 
b1 = fitmagfrd(sysg,ord); 
b1g = frd(b1,omega); 
bodemag(sysg,'r',b1g,'k:');
legend('Data','3rd order fit');
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Fit the magnitude data with a third-order system constrained to lie below and above the given data.

C2.UpperBound = sysg;
C2.LowerBound = [];
b2 = fitmagfrd(sysg,ord,[],[],C2); 
b2g = frd(b2,omega); 
C3.UpperBound = [];
C3.LowerBound = sysg;
b3 = fitmagfrd(sysg,ord,[],[],C3); 
b3g = frd(b3,omega); 
bodemag(sysg,'r',b1g,'k:',b2g,'b-.',b3g,'m--') 
legend('Data','3rd order fit','3rd order fit, below data',...
       '3rd order fit, above data')
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Fit the magnitude data with a second-order system constrained to lie below and above the given data.

ord = 2;
C2.UpperBound = sysg;
C2.LowerBound = [];
b2 = fitmagfrd(sysg,ord,[],sysg,C2);
b2g = frd(b2,omega);
C3.UpperBound = [];
C3.LowerBound = sysg;
b3 = fitmagfrd(sysg,ord,[],sysg,C3);
b3g = frd(b3,omega);
bgp = fitfrd(genphase(sysg),ord);
bgpg = frd(bgp,omega);
bodemag(sysg,'r',b1g,'k:',b2g,'b-.',b3g,'m--',bgpg,'r--')
legend('Data','3rd order fit','2d order fit, below data',...
       '2nd order fit, above data','bgpg')
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Limitations
This input frd object must be either a scalar 1-by-1 object or, a row, or column vector.

Algorithms
fitmagfrd uses a version of log-Chebyshev magnitude design, solving

   min f     subject to (at every frequency point in A):  
           |d|^2 /(1+ f/WT) < |n|^2/A^2 < |d|^2*(1 + f/WT) 

plus additional constraints imposed with C. n, d denote the numerator and denominator,
respectively, and B = n/d. n and d have orders (N-RD) and N, respectively. The problem is solved
using linear programming for fixed f and bisection to minimize f. An alternate approximate method,
which cannot enforce the constraints defined by C, is B = fitfrd(genphase(A),N,RD,WT).

References
Oppenheim, A.V., and R.W. Schaffer, Digital Signal Processing, Prentice Hall, New Jersey, 1975, p.
513.

Boyd, S. and Vandenberghe, L., Convex Optimization, Cambridge University Press, 2004.
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See Also
fitfrd

Introduced before R2006a
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gapmetric
Gap metric and Vinnicombe (nu-gap) metric for distance between two systems

Syntax
[gap,nugap] = gapmetric(P1,P2)
[gap,nugap] = gapmetric(P1,P2,tol)

Description
[gap,nugap] = gapmetric(P1,P2) computes the gap and Vinnicombe (ν-gap) metrics for the
distance between dynamic systems P1 and P2. The gap metric on page 1-134 values satisfy 0 ≤
nugap ≤ gap ≤ 1. Values close to zero imply that any controller that stabilizes P1 also stabilizes P2
with similar closed-loop gains.

[gap,nugap] = gapmetric(P1,P2,tol) specifies a relative accuracy for calculating the gaps.

Examples

Compute Gap Metrics for Stable and Unstable Plant Models

Create two plant models. One plant, P1, is an unstable first-order system with transfer function 1/(s–
0.001). The other plant, P2, is stable, with transfer function 1/(s +0.001).

P1 = tf(1,[1 -0.001]); 
P2 = tf(1,[1 0.001]);

Despite the fact that one plant is unstable and the other is stable, these plants are close as measured
by the gap and nugap metrics.

[gap,nugap] = gapmetric(P1,P2)

gap = 0.0021

nugap = 0.0020

The gap is very small compared to 1. Thus a controller that yields a stable closed-loop system with P2
also tends to stabilize P1. For instance, the feedback controller C = 1 stabilizes both plants and
renders nearly identical closed-loop gains. To see this, examine the sensitivity functions of the two
closed-loop systems.

C = 1; 
H1 = loopsens(P1,C); 
H2 = loopsens(P2,C); 
subplot(2,2,1); bode(H1.Si,'-',H2.Si,'r--'); 
subplot(2,2,2); bode(H1.Ti,'-',H2.Ti,'r--'); 
subplot(2,2,3); bode(H1.PSi,'-',H2.PSi,'r--'); 
subplot(2,2,4); bode(H1.CSo,'-',H2.CSo,'r--');
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Next, consider two stable plant models that differ by a first-order system. One plant, P3, is the
transfer function 50/(s+50), and the other plant, P4, is the transfer function [50/(s+50)]*8/(s+8).

P3 = tf(50,[1 50]); 
P4 = tf(8,[1 8])*P3;
figure
bode(P3,P4)
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Although the two systems have similar high-frequency dynamics and the same unity gain at low
frequency, by the gap and nugap metrics, the plants are fairly far apart.

[gap,nugap] = gapmetric(P3,P4)

gap = 0.6148

nugap = 0.6147

Compute Gap Metric and Stability Margin

Consider a plant and a stabilizing controller.

P1 = tf([1 2],[1 5 10]);
C = tf(4.4,[1 0]);

Compute the stability margin for this plant and controller.

b1 = ncfmargin(P1,C)

b1 = 0.1961

Next, compute the gap between P1 and the perturbed plant, P2.

P2 = tf([1 1],[1 3 10]);
[gap,nugap] = gapmetric(P1,P2)
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gap = 0.1391

nugap = 0.1390

Because the stability margin b1 = b(P1,C) is greater than the gap between the two plants, C also
stabilizes P2. As discussed in “Gap Metrics and Stability Margins” on page 1-134, the stability margin
b2 = b(P2,C) satisfies the inequality asin(b(P2,C)) ≥ asin(b1)-asin(gap). Confirm this
result.

b2 = ncfmargin(P2,C);
[asin(b2) asin(b1)-asin(gap)]

ans = 1×2

    0.0997    0.0579

Input Arguments
P1,P2 — Input systems
dynamic system models

Input systems, specified as dynamic system models. P1 and P2 must have the same input and output
dimensions. If P1 or P2 is a generalized state-space model (genss or uss) then gapmetric uses the
current or nominal value of all control design blocks.

tol — Relative accuracy
0.001 (default) | positive scalar

Relative accuracy for computing the gap metrics, specified as a positive scalar. If gapactual is the true
value of the gap (or the Vinnicombe gap), the returned value gap (or nugap) is guaranteed to satisfy

|1 – gap/gapactual| < tol.

Output Arguments
gap — Gap between P1 and P2
scalar in [0,1]

Gap on page 1-134 between P1 and P2, returned as a scalar in the range [0,1]. A value close to zero
implies that any controller that stabilizes P1 also stabilizes P2 with similar closed-loop gains. A value
close to 1 means that P1 and P2 are far apart. A value of 0 means that the two systems are identical.

nugap — Vinnicombe gap (ν-gap) between P1 and P2
scalar in [0,1]

Vinnicombe gap on page 1-134 (ν-gap) between P1 and P2, returned as a scalar value in the range
[0,1]. As with gap, a value close to zero implies that any controller that stabilizes P1 also stabilizes P2
with similar closed-loop gains. A value close to 1 means that P1 and P2 are far apart. A value of 0
means that the two systems are identical. Because 0 ≤ nugap ≤ gap ≤ 1, the ν-gap can provide a
more stringent test for robustness as described in “Gap Metrics and Stability Margins” on page 1-
134.
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More About
Gap Metric

For plants P1 and P2, let P1 = N1M1
−1 and P2 = N2M2

−1 be right normalized coprime factorizations (see
rncf). Then the gap metric δg is given by:

δg P1, P2 = max δ g P1, P2 , δ g P2, P1 .

Here, δ g P1, P2  is the directed gap, given by

δ g P1, P2 = min
stable Q s

M1
N1

−
M2
N2

Q
∞

.

For more information, see [1] and Chapter 17 of [2].

Vinnicombe Gap Metric

For P1 and P2, the Vinnicombe gap metric is given by

δν P1, P2 = max
ω

I + P2P2*
−1/2 P1− P2 I + P1P1*

−1/2
∞,

provided that det I + P2*P1  has the right winding number. Here, * denotes the conjugate (see
ctranspose). This expression is a weighted difference between the two frequency responses P1(jω)
and P2(jω). For more information, see Chapter 17 of [2].

Gap Metrics and Stability Margins

The gap and ν-gap metrics give a numerical value δ(P1,P2) for the distance between two LTI systems.
For both metrics, the following robust performance result holds:

arcsin b(P2,C2) ≥ arcsin b(P1,C1) – arcsin δ(P1,P2) – arcsin δ(C1,C2),

where the stability margin b (see ncfmargin), assuming negative-feedback architecture, is given by

b(P, C) =
I
C

(I + PC)−1 I P
∞

−1
=

I
P

(I + CP)−1 I C
∞

−1
.

To interpret this result, suppose that a nominal plant P1 is stabilized by controller C1 with stability
margin b(P1,C1). Then, if P1 is perturbed to P2 and C1 is perturbed to C2, the stability margin is
degraded by no more than the above formula. For an example, see “Compute Gap Metric and
Stability Margin” on page 1-132.

The ν-gap is always less than or equal to the gap, so its predictions using the above robustness result
are tighter.

The quantity b(P,C)–1 is the signal gain from disturbances on the plant input and output to the input
and output of the controller.

Gap Metrics in Robust Design

To make use of the gap metrics in robust design, you must introduce weighting functions. In the
robust performance formula, replace P by W2PW1, and replace C by W1

−1CW2
−1. You can make similar
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substitutions for P1, P2, C1 and C2. This form makes the weighting functions compatible with the
weighting structure in the H∞ loop shaping control design procedure used by functions such as
loopsyn and ncfsyn.

References
[1] Georgiou, Tryphon T. “On the Computation of the Gap Metric.” Systems & Control Letters 11, no.

4 (October 1988): 253–57. https://doi.org/10.1016/0167-6911(88)90067-9.

[2] Zhou, K., Doyle, J.C., Essentials of Robust Control. London, UK: Pearson, 1997.

See Also
ncfmargin | loopsyn | ncfsyn | robstab | wcdiskmargin | wcgain

Introduced before R2006a
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genphase
Fit single-input/single-output magnitude data with real, rational, minimum-phase transfer function

Syntax
resp = genphase(d)

Description
genphase uses the complex-cepstrum algorithm to generate a complex frequency response resp
whose magnitude is equal to the real, positive response d, but whose phase corresponds to a stable,
minimum-phase function. The input, d, and output, resp, are frd objects.

References
Oppenheim, A.V., and R.W. Schaffer, Digital Signal Processing, Prentice Hall, New Jersey, 1975, p.
513.

See Also
fitfrd | fitmagfrd

Introduced before R2006a
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getDGM
Convert gain and phase variation into disk-based gain variation

Syntax
DGM = getDGM(GM,PM,'tight')
DGM = getDGM(GM,PM,'balanced')
[DGM,DPM] = getDGM( ___ )

Description
In disk margin analysis, gain and phase variations are modeled as a factor F(s) multiplying the open
loop response L(s). This factor takes values in a disk D centered on the real axis with real-axis
intercepts gmin and gmax. The disk margin determines the largest disk size [gmin,gmax] for which
the feedback loop remains stable. This provides a gain margin of at least DGM = [gmin,gmax] and
also some phase margin DPM determined by the disk geometry.
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Conversely, getDGM takes desired gain and phase margins GM and PM and computes the smallest disk
D that delivers both. This disk is characterized by its real-axis intercepts gmin, gmax and the
corresponding disk-based gain margin DGM = [gmin,gmax] and phase margin DPM meet or exceed
GM and PM.

For more information about the disk model of gain and phase variation, see “Algorithms” on page 1-
146.

DGM = getDGM(GM,PM,'tight') computes the smallest disk that captures the target gain and
phase variations specified by GM and PM.

• If GM and PM are scalars, then the disk captures gain that can increase or decrease by a factor of
GM, and phase that can increase or decrease by PM.

• If GM and PM are vectors of the form [glo,ghi] and [pmin,pmax] then the disk captures relative
gain and phase variations in these ranges.
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• If either GM or PM is [], that removes the corresponding constraint on the disk size.

The output is of the form DGM = [gmin,gmax], and describes a disk that represents absolute gain
variations within that range. For instance, DGM = [0.8,1.8] models gain that can vary from 0.8
times the nominal value to 1.8 times the nominal value, and phase variations determined by the disk
geometry. This disk might have non-zero skew (see “Algorithms” on page 1-146). Use DGM to create a
umargin block that models these gain and phase variations.

DGM = getDGM(GM,PM,'balanced') computes the smallest disk that represents a symmetric gain
variation, that is, DGM = [gmin,gmax] where gmin = 1/gmax. This disk has zero skew (see
“Algorithms” on page 1-146).

[DGM,DPM] = getDGM( ___ ) also returns the disk-based phase range DPM modeled by the disk that
DGM describes. You can use this output argument with any of the previous syntaxes.

Examples

Smallest Disk-Based Gain Margin Corresponding to Gain and Phase Margins

Find the smallest disk-based gain margin that represents relative a gain variation of ±6 dB relative to
the nominal value and phase variation of ±40°. Convert the gain variation into absolute units.

GM = db2mag(6)

GM = 1.9953

PM = 40;
DGM = getDGM(GM,PM,'tight')

DGM = 1×2

    0.4299    1.9953

DGM describes a disk that models both gain and phase variations. The values in DGM represent the
range of gain variation in the absence of phase variation. Note that the DGM range is slightly larger
than the specified [1/GM,GM] range as the phase margin requirement is more stringent and
determines the disk size. Visualize the full range of gain and phase variations represented by DGM.

diskmarginplot(DGM)
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The 'tight' constraint computes the smallest disk that delivers both target gain and phase
variations, which does not necessarily represent a symmetric gain range. In this case, the disk
represents gain that can decrease somewhat more than it can increase. Examine the disk of
uncertainty defined by this particular DGM.

diskmarginplot(DGM,'disk')
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To enforce symmetric gain variation, use the 'balanced' option.

Balanced Disk-Based Gain Margin from Gain and Phase Margins

Determine the disk-based gain margin that delivers symmetric gain variation of ±5 dB and phase
variation of ±30 degrees.

GM = db2mag(5);
PM = 30;
DGM = getDGM(GM,PM,'balanced')

DGM = 1×2

    0.5623    1.7783

The 'balanced' constraint models a disk of uncertainty that is symmetric around the nominal value.
The function returns a symmetric disk-based gain margin DGM = [gmin,gmax], with gmin=1/gmax.

diskmarginplot(DGM)
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In this case, DPM slightly exceeds the target phase variation and DGM is equal to the target gain
variation.

Disk-Based Gain Margin for Specified Gain-Variation Range

Determine the disk-based gain margin corresponding to gain variations between 90% and 160% of
the nominal value, and phase variations from -15 to +15 degrees.

gainRange = [0.9,1.6];
phaseRange = [-15,15];
DGMt = getDGM(gainRange,phaseRange,'tight')

DGMt = 1×2

    0.8603    1.6000

The 'tight' constraint models the smallest disk that delivers target gain and phase variations. This
disk is modeled with gain variation that skews toward gain increase.

Alternatively, you can use the 'balanced' option to constrain the disk-based gain margin to a
symmetrical range of the form gmin = 1/gmax. This means that the gain can increase or decrease
by equal amount.

DGMb = getDGM(gainRange,phaseRange,'balanced')
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DGMb = 1×2

    0.6250    1.6000

Visualize the range of simultaneous gain and phase variations corresponding to both gain ranges.

diskmarginplot([DGMt;DGMb]) 

The balanced range DGMb models a larger, symmetric gain range (gmin = 1/gmax) and larger phase
variations than the ones you specify. If you are confident that gain varies more in one direction than
the other in your system, then this balanced model might be overly conservative.

Disk-Based Gain and Phase Ranges for Multiple Target Gain and Phase Variations

Determine the balanced disk-based gain margin ranges that delivers gain variations of ±4 dB, ±6 dB,
and ±12 dB and phase variation of ±30°. You can get all the disk-based gain ranges at once by
stacking the desired target ranges into a column vector.

GM = db2mag([4;6;12]);
PM = 30;
DGM = getDGM(GM,PM,'balanced')

DGM = 3×2
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    0.5774    1.7321
    0.5012    1.9953
    0.2512    3.9811

diskmarginplot(DGM)

Each row in the matrix DGM gives the disk-based gain variation for the corresponding entry in GM. For
instance, the smallest balanced (symmetric) disk that captures gain variation of ±4 dB and phase
variation of ±30° is specified by DGM(1,:) = [0.58 1.73].

This disk represents somewhat more than the target ±4 dB, in order to capture the full target gain
variation of ±30°. For the targets ±6 dB and ±12 dB, the disk meets the target gain variation exactly,
but the corresponding disks describe larger phase variations.

Input Arguments
GM — Target amount of relative gain variation
scalar | vector | two-column matrix

Target range of relative gain variation, specified as a scalar, vector, or two-column matrix.

• If GM is a scalar, then the disk captures gain that can increase or decrease by a factor of GM. For
instance, if GM = 2, then the output DGM represents gain that can decrease or increase by a factor
of 2.
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• If GM is a vectors of the form [glo,ghi] then the disk captures relative gain variations in this
range. For instance, if GM = [0.8,1.9], then DGM represents gain that can vary between 0.8 and
1.9 times the nominal value.

• If GM [], then getDGM returns a disk that captures the phase variation specified by PM, and the
corresponding gain variation determined by the disk model.

Multiple Ranges at Once

To get DGM corresponding to multiple target gain ranges at once, specify GM as a column vector
[GM1;...;GMn] or a matrix [glo1,ghi1;...;gloN,ghiN].

PM — Target amount of phase variation
scalar | vector | two-column matrix

Target phase variation, specified as a scalar, vector, or two-column matrix.

• If PM is a scalar, then the disk captures phase that can increase or decrease by PM. For instance, if
PM = 20, then the output DGM represents phase that can vary by ±20°.

• If PM is a vector of the form [pmin,pmax] with pmin < 0 and pmax > 0, then the disk captures
phase that can vary by ±min(abs(pmin),pmax). For instance, if [pmin,pmax] = [-20,40]
then the disk captures phase variation in the range [-40,40].

• If PM [], then getDGM returns a disk that captures the relative gain variation specified by GM, and
the corresponding phase variation determined by the disk model.

Multiple Ranges at Once

To get DGM corresponding to multiple target phase ranges at once, specify PM as a column vector
[PM1;...;PMn] or a matrix of the form [-pm1,pm1;...;-pmN,pmN].

Output Arguments
DGM — Modeled range of relative gain variation
two-element vector | two-column matrix

Modeled range of relative gain variation, returned as a two-element vector of the form
[gmin,gmax], where gmin < 1 and gmax > 1. For instance, DGM = [0.8 1.5] represents a gain
that can vary between 80% and 150% of its nominal value (that is, change by a factor between 0.8
and 1.5). gmin can be negative, defining a range of relative gain variation that includes a change in
sign. When you use the 'balanced' option, the gain change is symmetric, that is, the gain can
increase or decrease by the same amount (gmin = 1/gmax).

The range [gmin,gmax] describes a disk of gain and phase uncertainty where the gain can vary by
[gmin,gmax] and the phase can vary by an amount determined by the disk geometry. For instance,
the following plot shows a disk characterized by DGM = [0.5,2] (For more information about the
disk-based uncertainty model, see “Algorithms” on page 1-146). The corresponding phase variation
(returned in DPM) is ±30°.
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In general, DGM or the corresponding DPM might capture larger ranges of variation than those you
specify with the inputs GM and PM. The disk always captures at least the specified variations.

If GM is a column vector or matrix representing multiple target ranges of gain variation, DGM is a two-
column matrix of the form [gmin1,gmax1; ...;gminN,gmaxN], where each row is a
corresponding disk-based gain range.

DPM — Disk-based phase variation
two-element vector | two-column matrix

Disk-based phase margin, returned as a two-element vector of the form [-pm,pm]. The amount of
phase variation is determined by the geometry of the disk described by DGM (see “Algorithms” on
page 1-146).

If PM is a column vector or matrix representing multiple target ranges of phase variation, DPM is a
two-column matrix of the form [-pm1,pm1; ...;-pmN,pmN], where each row is a corresponding
disk-based gain range.

Algorithms
umargin and diskmargin model gain and phase variations in an individual feedback channel as a
frequency-dependent multiplicative factor F(s) multiplying the nominal open-loop response L(s), such
that the perturbed response is L(s)F(s). The factor F(s) is parameterized by:

F s = 1 + α 1− σ /2 δ s
1− α 1 + σ /2 δ s .
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In this model,

• δ(s) is a gain-bounded dynamic uncertainty, normalized so that it always varies within the unit disk
(||δ||∞ < 1).

• ɑ sets the amount of gain and phase variation modeled by F. For fixed σ, the parameter ɑ controls
the size of the disk. For ɑ = 0, the multiplicative factor is 1, corresponding to the nominal L.

• σ, called the skew, biases the modeled uncertainty toward gain increase or gain decrease.

The factor F takes values in a disk centered on the real axis and containing the nominal value F = 1.
The disk is characterized by its intercept DGM = [gmin,gmax] with the real axis. gmin < 1 and
gmin > 1 are the minimum and maximum relative changes in gain modeled by F, at nominal phase.
The phase uncertainty modeled by F is the range DPM = [-pm,pm] of phase values at the nominal
gain (|F| = 1). For instance, in the following plot, the right side shows the disk F that intersects the
real axis in the interval [0.71,1.4]. The left side shows that this disk models a gain variation of ±3 dB
and a phase variation of ±19°.

DGM = [0.71,1.4]
F = umargin('F',DGM)
plot(F)

getDGM converts the target gain and phase variations that you want to model into the disk-based
gain-variation range DGM. This range fully characterizes the disk F. The corresponding phase range
DPM is thus determined by DGM and the disk model.

For further details about the uncertainty model for gain and phase variations, see “Stability Analysis
Using Disk Margins”.
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See Also
diskmargin | diskmarginplot | getDPM | umargin

Topics
“Stability Analysis Using Disk Margins”
“Model Gain and Phase Uncertainty in Feedback Loops”

Introduced in R2020a
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getDPM
Disk-based phase variation corresponding to disk-based gain variation

Syntax
DPM = getDPM(DGM)
DPM = getDPM(GM)

Description
DPM = getDPM(DGM) returns the disk-based phase variation corresponding to disk-based gain
variation DGM. In the model used by umargin, gain and phase variation are represented as a
multiplicative factor F(s) taking values in a disk centered on the real axis. The disk described by its
real-axis intercepts DGM = [gmin,gmax], which represent the relative amount of gain variation
around the nominal value F = 1. Because the disk is complex-valued, the disk described by DGM also
represents a certain amount of phase variation, DPM. For more information, see getDGM.

DPM = getDPM(GM) is the same as getDPM([1/GM,GM]). This syntax returns the disk-based phase
variation range corresponding to a gain that can increase or decrease by a factor GM.

Examples

Disk-Based Phase Variation Corresponding to Disk-Based Gain Variation

Find the disk-based phase margin which corresponds to the disk-based gain margin with variations in
the range [0.3,2].

DGM = [0.3,2];
DPM = getDPM(DGM)

DPM = 1×2

  -45.9208   45.9208

DGM = [0.3,2] describes a disk of multiplicative gain and phase uncertainty in which the gain can
vary from 0.3 times the nominal value to twice the nominal value (at nominal phase). Visualize the
disk.

diskmarginplot(DGM,'disk')
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The disk also describes phase variations of about ±46°. getDPM returns this phase range as DPM,
which is the range in which the modeled phase can vary at nominal gain. Visualize the range of
simultaneous gain and phase variations captured in the disk described by DGM = [0.3,2] and DPM
= [-45.92 45.92].

diskmarginplot(DGM)
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Disk-Based Phase Margin Corresponding to Symmetric Gain Variation

Find the disk-based phase margin corresponding to the gain variation of ±6 dB, or a factor of 2 in
either direction.

GM = db2mag(6);
DPM = getDPM(GM)

DPM = 1×2

  -36.7611   36.7611

For a scalar input GM, getDPM(GM) is same as getDPM([1/GM,GM]).

DPM = getDPM([1/GM,GM])

DPM = 1×2

  -36.7611   36.7611

For the given gain variation of ±6 dB, the corresponding disk models the phase variation range of
about ±36.8° at nominal gain. Visualize the disk and the combined gain and phase variations it
represents.
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diskmarginplot([1/GM,GM],'disk')

diskmarginplot([1/GM,GM])
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Input Arguments
DGM — Range of relative gain variation
two-element vector | two-column matrix

Range of relative gain variation, specified as a two-element vector of the form [gmin,gmax], where
gmin < 1 and gmax > 1. For instance, DGM = [0.8 1.5] represents a gain that can vary between
80% and 150% of its nominal value (that is, change by a factor between 0.8 and 1.5). gmin can be
negative, defining a range of relative gain variation that includes a change in sign.

DGM represents that the disk intersects real axis in the interval [gmin,gmax], where gmin < 1 and
gmax > 1. For instance, the following plot shows a disk characterized by DGM = [0.5,2].
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You can obtain DGM from desired gain and phase variations (or margins) using getDGM. The
GainMargin field of the output structures of the diskmargin command is also a disk-based gain
range of this form. .

To get DPM corresponding to multiple gain ranges at once, specify is a two-column matrix of form
[gmin1,gmax1;...;gminN,gmaxN].

GM — Amount of gain increase or decrease
scalar | vector

Amount of gain increase or decrease, specified as a real scalar or column vector.

• If GM is a real scalar, then getDPM returns the disk-based phase variation corresponding to a
symmetric gain variation of [1/GM,GM]. For instance, GM = 2 specifies a gain that can increase or
decrease by a factor of 2.

• If GM is a vector of form [GM1;...;GMN], then the function returns disk-based phase variations
corresponding to each range [1/GM1,GM1;...;1/GMN,GMN].

Output Arguments
DPM — Disk-based phase variation
two-element vector | two-column matrix

Disk-based phase variation, returned as a two-element vector or a two-column matrix.
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The vector DPM = [-pm,pm], represents the relative phase variation amount determined by the
geometry of the disk described by DGM. For more information, see getDGM.

If DGM is a two-column matrix containing multiple gain-variation ranges, the function returns a two-
column matrix of the form [-pm1,pm1; ...;-pmN,pmN].

See Also
diskmargin | diskmarginplot | getDGM | umargin | wcdiskmargin

Topics
“Stability Analysis Using Disk Margins”
“Model Gain and Phase Uncertainty in Feedback Loops”

Introduced in R2020a
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getLimits
Validity range for uncertain real (ureal) parameters

Syntax
[ActLims,NormLims] = getLimits(ublk)

Description
When the uncertainty range of a ureal parameter is not centered at its nominal value, there are
restrictions on the range of values the parameter can take. For robust stability analysis, these
restrictions mean that the smallest destabilizing perturbation of the parameter may be out of the
reach of the specified ureal model. Use getLimits to find out the range of actual and normalized
values that a ureal parameter can take.

[ActLims,NormLims] = getLimits(ublk) computes the intervals of actual and normalized
values that an uncertain real parameter can take. For meaningful analysis results, the actual and
normalized values of ublk must remain in these intervals. Values outside these intervals are
essentially meaningless. In other words, ActLims and NormLims are the ranges of validity of the
uncertainty model for real parameters.

Examples

Validity Range for Uncertain Parameters

Create a ureal uncertain parameter with range centered at the nominal value.

ublk = ureal('a',1,'range',[-1 3])

ublk = 
  Uncertain real parameter "a" with nominal value 1 and range [-1,3].

For such a parameter, b = 0 (see “Algorithms” on page 1-157), so there is no constraint on the values
that the actual uncertainty (ublk) and the normalized uncertainty (Δ) can take. Use getLimits to
confirm the ranges of the actual and normalized uncertainty.

[ActLims,NormLims] = getLimits(ublk)

ActLims = 1×2

  -Inf   Inf

NormLims = 1×2

  -Inf   Inf

Skew the uncertainty range to the right of the nominal value (DL < DR).
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ublk.PlusMinus = [-1 2] 

ublk = 
  Uncertain real parameter "a" with nominal value 1 and range [0,3].

Now, the values that ublk and Δ can take for analysis purposes are limited.

[ActLims,NormLims] = getLimits(ublk)

ActLims = 1×2

   -3.0000       Inf

NormLims = 1×2

  -Inf     3

Input Arguments
ublk — Uncertain real parameter
ureal

Uncertain real parameter, specified as a ureal object.

Output Arguments
ActLims — Limits on actual uncertainty
2-element row vector

Limits on the actual uncertainty range taken by ublk for analysis purposes, returned as a 2-element
vector of the form [min,max]. When the uncertainty range specified in ublk is centered on the
nominal value, ActLims = -Inf,Inf.

NormLims — Limits on normalized uncertainty
2-element row vector

Limits on the normalized uncertainty range of ublk used for analysis purposes, returned as a 2-
element vector of the form [min,max]. When the uncertainty range specified in ublk is centered on
the nominal value, NormLims = -Inf,Inf.

Algorithms
Analysis functions such as robstab and robgain model uncertain real parameters as:

u = unom + aΔ
1− bΔ , a > 0,

where u is the actual value, unom is the nominal value, and Δ is the normalized value. When the
uncertainty range is centered at the nominal value, there are no restrictions on the values u or Δ can
take. However, when the uncertainty range is skewed, there are limitations on these values. To
ensure continuity, the analysis functions restrict the values Δ and u to the ranges:
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Δ < 1
b , u > unom−

a
b , for DL < DR

Δ > − 1
b , u < unom + a

b , for DL < DR,

where DL and DR define the uncertainty range of u, [unom–DL,unom+DR]. Note that b and DR–DL
always have the same sign.

See Also
normalized2actual | ureal | actual2normalized

Introduced in R2018a
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getlmis
Internal description of LMI system

Syntax
lmisys = getlmis

Description
After completing the description of a given LMI system with lmivar and lmiterm, its internal
representation lmisys is obtained with the command

lmisys = getlmis

This MATLAB representation of the LMI system can be forwarded to the LMI solvers or any other
LMI-Lab function for subsequent processing.

See Also
setlmis | lmivar | lmiterm | newlmi

Introduced before R2006a
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getNominal
Nominal value of uncertain model

Syntax
Mnom = getNominal(M)

Description
Mnom = getNominal(M) replaces all uncertain elements in M with their nominal values. All other
control design blocks in M are unchanged.

Examples

Nominal Value of Uncertain Models

Create a model of a mass-spring-damper system in which the mass, spring constant, and damping
constant are all uncertain.

m = ureal('m',3,'percent',40);
k = ureal('k',2,'percent',30);
c = ureal('c',1,'percent',20);
G = tf(1,[m,c,k])

G =

  Uncertain continuous-time state-space model with 1 outputs, 1 inputs, 2 states.
  The model uncertainty consists of the following blocks:
    c: Uncertain real, nominal = 1, variability = [-20,20]%, 1 occurrences
    k: Uncertain real, nominal = 2, variability = [-30,30]%, 1 occurrences
    m: Uncertain real, nominal = 3, variability = [-40,40]%, 1 occurrences

Type "G.NominalValue" to see the nominal value, "get(G)" to see all properties, and "G.Uncertainty" to interact with the uncertain elements.

G is a uss model. Extract its nominal value.

Gnom = getNominal(G);

Because G has only uncertain control design blocks, Gnom is a numeric state-space (ss) model.

Combine G with a tunable PID controller.

C = tunablePID('C','pid');
T = feedback(G*C,1)

T =

  Generalized continuous-time state-space model with 1 outputs, 1 inputs, 3 states, and the following blocks:
    C: Tunable PID controller, 1 occurrences.
    c: Uncertain real, nominal = 1, variability = [-20,20]%, 1 occurrences
    k: Uncertain real, nominal = 2, variability = [-30,30]%, 1 occurrences
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    m: Uncertain real, nominal = 3, variability = [-40,40]%, 1 occurrences

Type "ss(T)" to see the current value, "get(T)" to see all properties, and "T.Blocks" to interact with the blocks.

T is a generalized state-space (genss) model that has both tunable and uncertain blocks. Extract the
nominal value of T.

Tnom = getNominal(T)

Tnom =

  Generalized continuous-time state-space model with 1 outputs, 1 inputs, 3 states, and the following blocks:
    C: Tunable PID controller, 1 occurrences.

Type "ss(Tnom)" to see the current value, "get(Tnom)" to see all properties, and "Tnom.Blocks" to interact with the blocks.

Extracting the nominal value of T preserves the tunable control design block, resulting in another
genss model.

Input Arguments
M — Uncertain model or matrix
dynamic system model | static model

Uncertain model or matrix, specified as a dynamic system model or static model. Typically, M is a
model that contains uncertainty, such as a uss, uncertain genss, or umat model.

Output Arguments
Mnom — Nominal model or matrix
dynamic system model | static model

Nominal value of M, returned as a dynamic system model or static model. Mnom has no uncertain
blocks.

The model type of Mnom depends on the type of M. For example, if M is a genss model with uncertain
blocks and tunable blocks, then Mnom is a genss model with tunable blocks.

If M contains no control design blocks other than uncertain blocks, then Mnom is a state-space (ss)
model, an frd model, or a numeric array, depending on the type of M. For example, if M is a uss
model, then Mnom is a ss model. If M is a umat, then Mnom is a numeric array.

If M has no uncertain blocks, then Mnom = M.

See Also
uss | umat | genss

Introduced in R2015b
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gevp
Generalized eigenvalue minimization under LMI constraints

Syntax
[lopt,xopt] = gevp(lmisys,nlfc,options,linit,xinit,target)

Description
gevp solves the generalized eigenvalue minimization problem of minimizing λ, subject to:

C(x) < D(x)  (1-4)

0 < B(x)  (1-5)

A(x) < λB(x)  (1-6)

where C(x) < D(x) and A(x) < λB(x) denote systems of LMIs. Provided that “Equation 1-4” and
“Equation 1-5” are jointly feasible, gevp returns the global minimum lopt and the minimizing value
xopt of the vector of decision variables x. The corresponding optimal values of the matrix variables
are obtained with dec2mat.

The argument lmisys describes the system of LMIs “Equation 1-4” to “Equation 1-6” for λ = 1. The
LMIs involving λ are called the linear-fractional constraints while “Equation 1-4” and “Equation 1-5”
are regular LMI constraints. The number of linear-fractional constraints “Equation 1-6” is specified
by nlfc. All other input arguments are optional. If an initial feasible pair (λ0, x0) is available, it can be
passed to gevp by setting linit to λ0 and xinit to x0. Note that xinit should be of length
decnbr(lmisys) (the number of decision variables). The initial point is ignored when infeasible.
Finally, the last argument target sets some target value for λ. The code terminates as soon as it has
found a feasible pair (λ, x) with λ ≤ target.

Caution
When setting up your gevp problem, be cautious to

• Always specify the linear-fractional constraints “Equation 1-6” last in the LMI system. gevp
systematically assumes that the last nlfc LMI constraints are linear fractional.

• Add the constraint B(x) > 0 or any other LMI constraint that enforces it (see Remark below). This
positivity constraint is required for regularity and good formulation of the optimization problem.

Control Parameters
The optional argument options lets you access control parameters of the optimization code. In
gevp, this is a five-entry vector organized as follows:

• options(1) sets the desired relative accuracy on the optimal value lopt (default = 10–2).
• options(2) sets the maximum number of iterations allowed to be performed by the optimization

procedure (100 by default).
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• options(3) sets the feasibility radius. Its purpose and usage are the same as for feasp.
• options(4) helps speed up termination. If set to an integer value J > 0, the code terminates

when the progress in λ over the last J iterations falls below the desired relative accuracy. Progress
means the amount by which λ decreases. The default value is 5 iterations.

• options(5) = 1 turns off the trace of execution of the optimization procedure. Resetting
options(5) to zero (default value) turns it back on.

Setting option(i) to zero is equivalent to setting the corresponding control parameter to its default
value.

Examples
Given

A1 =
−1 2
1 −3

,  A2 =
−0.8 1.5
1.3 −2.7

,  A3 =
−1.4 0.9
0.7 −2.0

,

consider the problem of finding a single Lyapunov function V(x) = xTPx that proves stability of

ẋ = Aix (i = 1, 2, 3)

and maximizes the decay rate dV(x)
dt . This is equivalent to minimizing

α subject to

I < P  (1-7)

A1
TP + PA1 < αP  (1-8)

A2
TP + PA2 < αP  (1-9)

A3
TP + PA3 < αP  (1-10)

To set up this problem for gevp, first specify the LMIs “Equation ” to “Equation ”with α = 1:

setlmis([]); 
p = lmivar(1,[2 1])

lmiterm([1 1 1 0],1)     % P > I : I 
lmiterm([-1 1 1 p],1,1)     % P > I : P 
lmiterm([2 1 1 p],1,a1,'s')     % LFC # 1 (lhs) 
lmiterm([-2 1 1 p],1,1)     % LFC # 1 (rhs) 
lmiterm([3 1 1 p],1,a2,'s')     % LFC # 2 (lhs) 
lmiterm([-3 1 1 p],1,1)     % LFC # 2 (rhs) 
lmiterm([4 1 1 p],1,a3,'s')     % LFC # 3 (lhs) 
lmiterm([-4 1 1 p],1,1)     % LFC # 3 (rhs) 
lmis = getlmis

Note that the linear fractional constraints are defined last as required. To minimize α subject to
“Equation ” to “Equation ”, call gevp by

[alpha,popt]=gevp(lmis,3)
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This returns alpha = -0.122 as the optimal value (the largest decay rate is therefore 0.122). This
value is achieved for:

P =
5.58 −8.35
−8.35 18.64

Tips
Generalized eigenvalue minimization problems involve standard LMI constraints “Equation 1-4” and
linear fractional constraints “Equation 1-6”. For well-posedness, the positive definiteness of B(x) must
be enforced by adding the constraint B(x) > 0 to the problem. Although this could be done
automatically from inside the code, this is not desirable for efficiency reasons. For instance, the set of
constraints “Equation 1-5” may reduce to a single constraint as in the example above. In this case,
the single extra LMI “P > I ” is enough to enforce positivity of all linear-fractional right sides. It is
therefore left to the user to devise the least costly way of enforcing this positivity requirement.

References
The solver gevp is based on Nesterov and Nemirovski's Projective Method described in

Nesterov, Y., and A. Nemirovski, Interior Point Polynomial Methods in Convex Programming: Theory
and Applications, SIAM, Philadelphia, 1994.

The optimization is performed by the C MEX-file fpds.mex.

See Also
dec2mat | decnbr | feasp | mincx

Introduced before R2006a
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gm2dm
Convert disk-based gain margin to disk size and skew

Syntax
[alpha,sigma] = gm2dm(DGM)
[alpha,sigma] = gm2dm(GM)

Description
umargin and diskmargin model gain and phase variation as a multiplicative factor F(s) taking
values in a disk centered on the real axis. The disk is described by two parameters: ɑ, which sets the
size of the variation, and σ, or skew, which biases the gain variation toward increase or decrease.
(See “Algorithms” on page 1-170 for more details about this model.) The disk can alternatively be
described by its real-axis intercepts DGM = [gmin,gmax], which represent the relative amount of
gain variation around the nominal value F = 1. Use gm2dm and dm2gm to convert between the ɑ,σ
values and the disk-based gain margin DGM = [gmin,gmax] that describe the same disk.

[alpha,sigma] = gm2dm(DGM) returns the disk size alpha and skew sigma corresponding to the
disk-based gain margin DGM. The gain margin DGM is a vector of the form [gmin,gmax].

[alpha,sigma] = gm2dm(GM) is the same as gm2dm([1/GM,GM]). This syntax returns the disk
size for gain that can increase or decrease by a factor GM. This syntax always returns sigma = 0.

Examples

Determine Disk Size for Symmetric Gain Variation

Compute the disk size α of the disk that represents a gain variation of ±6 dB, that is, gain that can
increase or decrease by about a factor of 2.

GM = db2mag(6);
[alpha,sigma] = gm2dm(GM)

alpha = 0.6646

sigma = 0

For symmetric gain variations, the skew sigma is 0. Examine the disk corresponding to this gain
variation.

diskmarginplot(alpha,sigma,'disk')
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The disk that captures gain variations of a factor of two in either direction also models phase
variations of ±37°.

Determine Disk Size and Skew from Disk-Based Gain Margin

Determine the disk size and skew needed to capture gain variations between 80% and 150% of
nominal and phase variation between –20 and +40 degrees. First, use getDGM to find DGM =
[gmin,gmax] that describes a disk that captures these target ranges.

DGM = getDGM([0.8,1.5],[-20,40],'tight')

DGM = 1×2

    0.2031    1.5000

Now use gm2dm to convert that disk-based gain variation into the α,σ parameterization of the disk.

[alpha,sigma] = gm2dm(DGM)

alpha = 0.6145

sigma = -1.7451
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For the modeled gain and phase variations, the skew is less than zero because the disk-based gain
range DGM = [0.2 1.5] includes more gain decrease than increase.

diskmarginplot(alpha,sigma,'disk')

Determine Disk Size and Skew of Several Disk-Based Margins

Determine the disk size and skew of the disks which capture gain ranges [0.2,1.3], [0.5,2] and [0.8,3].

GainRange1 = [0.2,1.3];
GainRange2 = [0.5,2];
GainRange3 = [0.8,3];

For the gain ranges above, compute the disk-based gain margin.

[alpha,sigma] = gm2dm([GainRange1;GainRange2;GainRange3])

alpha = 3×1

    0.4364
    0.6667
    0.3636

sigma = 3×1
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   -3.0833
         0
    3.5000

For the vector sigma, the first entry is negative because first entry of DGM has bias toward gain
decrease. Similarly, second entry is zero because of balanced gain variation and third entry is positive
because of bias toward gain increase. The plot shows the disks corresponding to range of gain
variations specified above.

diskmarginplot(alpha,sigma,'disk')

Input Arguments
DGM — Range of relative gain variation
two-element vector | two-column matrix

Range of relative gain variation, specified as a two-element vector of the form [gmin,gmax], where
gmin < 1 and gmax > 1. For instance, DGM = [0.8 1.5] represents a gain that can vary between
80% and 150% of its nominal value (that is, change by a factor between 0.8 and 1.5). gmin can be
negative, defining a range of relative gain variation that includes a change in sign.

The range [gmin,gmax] describes a disk of gain and phase uncertainty where the gain can vary by
[gmin,gmax] and the phase can vary by an amount determined by the disk geometry. The gm2dm

1 Functions

1-168



command finds the disk size alpha and skew sigma that parameterize this disk. For more
information about the disk-based uncertainty model, see “Algorithms” on page 1-170.

You can obtain DGM from desired gain and phase variations (or margins) using getDGM. The
GainMargin field of the output structures of the diskmargin command is also a disk-based gain
range of this form. .

To get alpha and sigma corresponding to multiple gain variation ranges at once, specify DGM as a
two-column matrix of the form [gmin1,gmax1; ...;gminN,gmaxN], where each row is a
corresponding disk-based gain range.

GM — Amount of gain increase or decrease
scalar | vector

Amount of gain increase or decrease in absolute units, specified as a real scalar or a vector.

• If GM is a real scalar, then gm2dm returns the disk size alpha corresponding to the symmetric gain
variation in the range [1/GM,GM]. For instance, GM = 2 specifies a gain that can increase or
decrease by a factor of 2. For such symmetric gain variation, the skew sigma is zero.

• If GM is a vector of form [GM1;...;GMN], the function returns alpha as a column vector of the
corresponding disk sizes.

Output Arguments
alpha — Disk size
scalar | vector

Disk size of the uncertainty corresponding to the input gain range, returned as a scalar or vector.
Disk-based gain-margin analysis represents gain and phase variation as a multiplicative uncertainty
F, which is a disk of values containing F = 1, corresponding to the nominal value of the system. The
disk is parameterized by alpha, which sets the size of the disk, and sigma, which biases the gain
variation toward gain increase or decrease. See “Algorithms” on page 1-170 for details about the
meaning of alpha.

If DGM is a two-column matrix or GM is a column vector, then alpha is a vector of the form
[alpha1;...;alphaN] of the corresponding disk sizes.

sigma — Skew
scalar | vector

Skew of the modeled uncertainty disk, returned as a scalar or vector. The skew biases the modeled
gain variation toward gain increase or decrease.

• sigma = 0 for a balanced gain range [gmin,gmax], with gmin = 1/gmax.
• sigma is positive for a varying gain that can increase more than it can decrease, gmax > 1/

gmin.
• sigma is negative for a varying gain that can decrease more than it can increase, gmin < 1/

gmax.

The more the gain range is biased, the larger the absolute value of sigma. For a scalar gain variation
input GM, the skew sigma is always zero. For additional details about the meaning of sigma, see
“Algorithms” on page 1-170.
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If DGM is a two-column matrix, then sigma is a vector of the form [sigma1;...;sigmaN] of the
corresponding skew values.

Algorithms
umargin and diskmargin model gain and phase variations in an individual feedback channel as a
frequency-dependent multiplicative factor F(s) multiplying the nominal open-loop response L(s), such
that the perturbed response is L(s)F(s). The factor F(s) is parameterized by:

F s = 1 + α 1− σ /2 δ s
1− α 1 + σ /2 δ s .

In this model,

• δ(s) is a gain-bounded dynamic uncertainty, normalized so that it always varies within the unit disk
(||δ||∞ < 1).

• ɑ sets the amount of gain and phase variation modeled by F. For fixed σ, the parameter ɑ controls
the size of the disk. For ɑ = 0, the multiplicative factor is 1, corresponding to the nominal L.

• σ, called the skew, biases the modeled uncertainty toward gain increase or gain decrease.

The factor F takes values in a disk centered on the real axis and containing the nominal value F = 1.
The disk is characterized by its intercept DGM = [gmin,gmax] with the real axis. gmin < 1 and
gmin > 1 are the minimum and maximum relative changes in gain modeled by F, at nominal phase.
The phase uncertainty modeled by F is the range DPM = [-pm,pm] of phase values at the nominal
gain (|F| = 1). For instance, in the following plot, the right side shows the disk F that intersects the
real axis in the interval [0.71,1.4]. The left side shows that this disk models a gain variation of ±3 dB
and a phase variation of ±19°.

DGM = [0.71,1.4]
F = umargin('F',DGM)
plot(F)
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gm2dm and gm2dm converts between these two ways of specifying a disk of multiplicative gain and
phase uncertainty: a gain-variation range of the form DGM = [gmin,gmax], and the ɑ,σ
parameterization of the corresponding disk.

For further details about the uncertainty model for gain and phase variations, see “Stability Analysis
Using Disk Margins”.

See Also
diskmargin | diskmarginplot | dm2gm | getDGM | umargin

Topics
“Stability Analysis Using Disk Margins”

Introduced in R2020a
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gridureal
Grid ureal parameters uniformly over their range

Syntax
B = gridureal(A,N)
[B,SampleValues] = gridureal(A,N)
[B,SampleValues] = gridureal(A,NAMES,N)
[B,SampleValues] = gridureal(A,NAMES1,N1,NAMES2,N2,...)

Description
B = gridureal(A,N) substitutes N uniformly-spaced samples of the uncertain real parameters in A.
The samples are chosen to cut “diagonally” across the cube of real parameter uncertainty space. The
array B has size equal to [size(A) N]. For example, suppose A has 3 uncertain real parameters, say
X, Y and Z. Let (x1, x2 , , and xN) denote N uniform samples of X across its range. Similar for Y
and Z. Then sample A at the points (x1, y1, z1), (x2, y2, z2), and (xN, yN, zN) to obtain
the result B.

If A depends on additional uncertain objects, then B will be an uncertain object.

[B,SampleValues] = gridureal(A,N) additionally returns the specific sampled values (as a
structure whose fieldnames are the names of A's uncertain elements) of the uncertain reals.
Hence, B is the same as usubs(A,SampleValues).

[B,SampleValues] = gridureal(A,NAMES,N) samples only the uncertain reals listed in the
NAMES variable (cell, or char array). Any entries of NAMES that are not elements of A are simply
ignored. Note that gridureal(A, fieldnames(A.Uncertainty),N) is the same as
gridureal(A,N).

[B,SampleValues] = gridureal(A,NAMES1,N1,NAMES2,N2,...) takes N1 samples of the
uncertain real parameters listed in NAMES1, and N2 samples of the uncertain real parameters listed in
NAMES2 and so on. size(B) will equal [size(A) N1 N2 ...].

Examples

Grid Open-Loop and Closed-Loop Responses of Uncertain System

Create two uncertain real parameters gamma and tau. The nominal value of gamma is 4 and its range
is 3 to 5. The nominal value of tau is 0.5 and its value can vary by +/- 30 percent.

gamma = ureal('gamma',4); 
tau = ureal('tau',.5,'Percentage',30);

These uncertain parameters are used to construct an uncertain transfer function p. An integral
controller, c, is synthesized for the plant p based on the nominal values of gamma and tau. The
uncertain closed-loop system clp is formed.

p = tf(gamma,[tau 1]); 
KI = 1/(2*tau.Nominal*gamma.Nominal); 
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c = tf(KI,[1 0]); 
clp = feedback(p*c,1);

The figure below shows the open-loop unit step response (top plot) and closed-loop response (bottom
plot) for a grid of 20 values of gamma and tau.

subplot(2,1,1); step(gridureal(p,20),6) 
title('Open-loop plant step responses') 
subplot(2,1,2); step(gridureal(clp,20),6)

The plot illustrates the low-frequency closed-loop insensitivity achieved by the PI control system.

Grid Over Multi-Dimensional Parameter Spaces

This example illustrates the different options in gridding high-dimensional (e.g., n greater than 2)
parameter spaces.

Construct an uncertain matrix, m, from four uncertain real parameters, a, b, c, and d, each making up
the individual entries in m.

a = ureal('a',1); 
b = ureal('b',2); 
c = ureal('c',3); 
d = ureal('d',4); 
m = [a b;c d];
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First, grid the (a,b) space at five places, and the (c,d) space at three places.

m1 = gridureal(m,{'a';'b'},5,{'c';'d'},3);

gridureal evaluates the uncertain matrix m at these 15 grid points, resulting in the numerical
matrix m1.

Next, grid the (a,b,c,d) space at 15 places.

m2 = gridureal(m,{'a';'b';'c';'d'},15);

gridureal samples the uncertain matrix m at these 15 points, resulting in the numerical matrix m2.

The (2,1) entry of m is just the uncertain real parameter c. Plot the histograms of the (2,1) entry of
both m1 and m2. The (2,1) entry of m1 only takes on three distinct values, while the (2,1) entry of m2
takes on 15 distinct values uniformly through its range.

subplot(2,1,1) 
hist(squeeze(m1(2,1,:))) 
title('2,1 entry of m1') 
subplot(2,1,2) 
hist(squeeze(m2(2,1,:)))
title('2,1 entry of m2')

See Also
usample | usubs

1 Functions

1-174



Introduced before R2006a
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h2hinfsyn
Mixed H2/H∞ synthesis with regional pole placement constraints

Syntax
[K,CL,normz,info] = h2hinfsyn(P,Nmeas,Ncon,Nz2,Wz,Name,Value)

Description
[K,CL,normz,info] = h2hinfsyn(P,Nmeas,Ncon,Nz2,Wz,Name,Value) employs LMI
techniques to compute an output-feedback control law u = K(s)y for the control problem of the
following illustration.

The LTI plant P has partitioned state-space form given by

ẋ = Ax + B1w + B2u,
z∞ = C1x + D11w + D12u,
z2 = C2x + D21w + D22u,
y = Cyx + Dy1w + Dy2u .

The resulting controller K:

• Keeps the H∞ norm G of the transfer function from w to z∞ below the value you specify using the
Name,Value argument 'HINFMAX'.

• Keeps the H2 norm H of the transfer function from w to z2 below the value you specify using the
Name,Value argument 'H2MAX'.

• Minimizes a trade-off criterion of the form

W1G2 + W2H2,

where W1 and W2 are the first and second entries in the vector Wz.
• Places the closed-loop poles in the LMI region that you specify using the Name,Value argument

'REGION'.

Use the input arguments Nmeas, Ncon, and Nz2 to specify the number of signals in y, u, and z2,
respectively. You can use additional Name,Value pairs to specify additional options for the
computation.
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Examples

Controller Design with Pole-Placement Constraint

Given a plant, design a controller such that the poles of the closed-loop system lie in the half-plane
defined by Re(s) < –1.

You can define this region for pole-placement using the interactive lmireg command. To do so,

1 Enter region = lmireg at the MATLAB® command line.
2 Enter h to specify a half-plane constraint.
3 Enter l to specify the left half-plane.
4 Enter -1 to specify that the cutoff for the region is x0 = –1.
5 Enter q to exit and create the LMI region.

The region created by this process is equivalent to the following commands. (For more information,
see the lmireg reference page.)

RealPart = -1; 
region = [-2*RealPart + 1i 1]; 

Specify the plant model. For this example, use a two-input, three-output plant. Assume the plant
contains one control signal and one measurement signal (nmeas = ncont = 1), and is partitioned
such that these signals are the last input and output, respectively.

A = [1 0;2 1]; 
B = [1 1;1 0]; 
C = [1 1;1 1;1 1]; 
D = zeros(3,2);
P = ss(A,B,C,D);

Compute a controller for P using the LMI region to restrict the closed-loop pole locations. Apply an
H2 norm constraint to one signal (Nz2 = 1) and give the H2 and H∞ norms equal weight.

ncont = 1;
nmeas = 1;
Nz2 = 1 ;
Wz = [0 0];
[K,CL] = h2hinfsyn(P,nmeas,ncont,Nz2,Wz,'Region',region); 

 Solver for LMI feasibility problems L(x) < R(x)
    This solver minimizes  t  subject to  L(x) < R(x) + t*I
    The best value of t should be negative for feasibility

 Iteration   :    Best value of t so far 
 
     1                        7.368392
     2                      -95.362851

 Result:  best value of t:   -95.362851
          f-radius saturation:  0.009% of R =  1.00e+08
 

Confirm that the poles of the closed-loop system have Re(s) < –1.

 h2hinfsyn

1-177



pole(CL)

ans = 4×1 complex

  -1.6786 + 3.2056i
  -1.6786 - 3.2056i
  -1.5563 + 1.6678i
  -1.5563 - 1.6678i

You can push the closed-loop eigenvalues further left by changing RealPart. Or you can define other
pole-placement regions. For instance, place the poles such that Re(s) falls in a strip of the complex
plane –5 < Re(s) < –3. To define this region, use lmireg interactively to create reg1 specifying Re(s)
> –5, and reg2 specifying Re(s) < –3. Then, enter region = lmireg(reg1,reg2) to define the
intersection of these two regions. The following code is equivalent.

LeftRealPart = -5; 
RightRealPart = -3;
region = [-2*RightRealPart + 1i 0 1 0;
           0 2*LeftRealPart + 1i 0 -1];

Compute the new controller and confirm the locations of the closed-loop poles.

[K,CL] = h2hinfsyn(P,nmeas,ncont,Nz2,Wz,'Region',region); 

 Solver for LMI feasibility problems L(x) < R(x)
    This solver minimizes  t  subject to  L(x) < R(x) + t*I
    The best value of t should be negative for feasibility

 Iteration   :    Best value of t so far 
 
     1                       17.688394
     2                        1.074621
     3                      -13.502955

 Result:  best value of t:   -13.502955
          f-radius saturation:  0.048% of R =  1.00e+08
 

pole(CL)

ans = 4×1 complex

  -3.7864 + 4.9210i
  -3.7864 - 4.9210i
  -3.7752 + 3.6186i
  -3.7752 - 3.6186i

Input Arguments
P — Plant
LTI model

Plant, specified as an LTI model such as a tf or ss model. P must be a continuous-time model.

1 Functions

1-178



Nmeas — Number of measurement signals
positive integer

Number of measurement signals, specified as a positive integer. This value is the number of signals in
y.

Ncon — Number of control signals
positive integer

Number of control signals, specified as a positive integer. This value is the number of signals in u.

Nz2 — Number of signals subject to H2 constraint
positive integers

Number of signals subject to the constraint on the H2 norm, specified as a positive integer. This value
is the number of signals in z2. If the total number of outputs of P is Nout, then the first Nout - Nz2
- Nmeas outputs of P are subject to the constraint on the H∞ norm.

Wz — Weights for H∞ and H2 performance
1-by-2 vector

Weights for H∞ and H2 performance, specified as a 1-by-2 vector of the form [Winf,W2].

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'REGION',reg,'H2MAX',1,'HINFMAX',1,'DISPLAY','on'

REGION — Pole placement region
[] (default) | matrix

Pole placement region, specified as a comma-separated pair consisting of 'REGION' and a matrix of
the form [L,M]. This matrix specifies the pole placement region as:

z:L + zM + zMT < 0 .

Generate the matrix using lmireg. The default LMI region for pole placement, specified by the
empty matrix [], is the open left-half plane, enforcing closed-loop stability only.

H2MAX — Upper bound on H2 norm
Inf (default) | positive scalar

Upper bound on the H2 norm of the transfer function from w to z2, specified as a comma-separated
pair consisting of 'H2MAX' and a positive scalar value or Inf. The default value Inf is equivalent to
setting the limit to zero, and causes h2hinfsyn to minimize the H2 norm subject to the trade-off
criterion.
Example: 'H2MAX',1

HINFMAX — Upper bound on H∞ norm
Inf (default) | positive scalar

Upper bound on the H∞ norm of the transfer function from w to z∞, specified as a comma-separated
pair consisting of 'HINFMAX' and a positive scalar value or Inf. The default value Inf is equivalent
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to setting the limit to zero, and causes h2hinfsyn to minimize the H∞ norm subject to the trade-off
criterion.
Example: 'HINFMAX',1

DKMAX — Bound on controller feedthrough
100 (default) | nonnegative scalar

Bound on the norm on the feedthrough matrix DK of the controller, specified as a comma-separated
pair consisting of 'DKMAX' and a nonnegative scalar value. To make the controller K strictly proper,
set 'DKMAX' to 0.
Example: 'DKMAX',0

TOL — Relative accuracy of trade-off criterion
0.01 (default) | positive scalar

Desired relative accuracy on the optimal value of the trade-off criterion, specified as a comma-
separated pair consisting of 'TOL' and a positive scalar value.

DISPLAY — Toggle for screen display
'off' (default) | 'on'

Toggle for screen display of synthesis information, specified as a comma-separated pair consisting of
'DISPLAY' and either 'on' or 'off'.

Output Arguments
K — Optimal output-feedback controller
state-space model

Optimal output-feedback controller, returned as a state-space (ss) model with Nmeas inputs and
Ncon outputs.

CL — Closed-loop system
state-space model

Closed-loop system with synthesized controller, returned as a state-space (ss) model. The closed-loop
system is CL = lft(P,K).

normz — Closed-loop norms
1-by-2 vector

Closed-loop norms, returned as a 1-by-2 vector. The entries in this vector, respectively, are:

• The H∞ norm of the closed-loop transfer function from w to z∞.
• The H2 norm of the closed-loop transfer function from w to z2.

info — Solutions of LMI solvability conditions
structure

Solutions of LMI solvability conditions, returned as a structure containing the following fields:

• R — Solution R of LMI solvability condition
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• S — Solution S of LMI solvability condition

Tips
• Do not choose weighting functions with poles very close to s = 0 (z = 1 for discrete-time systems).

For instance, although it might seem sensible to choose W = 1/s to enforce zero steady-state error,
doing so introduces an unstable pole that cannot be stabilized, causing synthesis to fail. Instead,
choose W = 1/(s + δ). The value δ must be small but not very small compared to system dynamics.
For instance, for best numeric results, if your target crossover frequency is around 1 rad/s, choose
δ = 0.0001 or 0.001. Similarly, in discrete time, choose sample times such that system and
weighting dynamics are not more than a decade or two below the Nyquist frequency.

References
[1] Chilali, M., and P. Gahinet, “H∞ Design with Pole Placement Constraints: An LMI Approach,” IEEE

Trans. Aut. Contr., 41 (1995), pp. 358–367.

[2] Scherer, C., “Mixed H2/H-infinity Control,” Trends in Control: A European Perspective, Springer-
Verlag (1995), pp.173–216.

See Also
lmireg | msfsyn

Introduced before R2006a
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h2syn
Compute H2 optimal controller

Syntax
[K,CL,gamma] = h2syn(P,nmeas,ncont)
[K,CL,gamma] = h2syn(P,nmeas,ncont,opts)
[K,CL,gamma,info] = h2syn( ___ )

Description
[K,CL,gamma] = h2syn(P,nmeas,ncont) computes a stabilizing H2-optimal controller K for the
plant P. The plant has a partitioned form

z
y

=
P11 P12
P21 P22

w
u

,

where:

• w represents the disturbance inputs.
• u represents the control inputs.
• z represents the error outputs to be kept small.
• y represents the measurement outputs provided to the controller.

nmeas and ncont are the number of signals in y and u, respectively. y and u are the last outputs and
inputs of P, respectively. h2syn returns a controller K that stabilizes P and has the same number of
states. The closed-loop system CL = lft(P,K) achieves the performance level gamma, which is the
H2 norm of CL (see norm).

[K,CL,gamma] = h2syn(P,nmeas,ncont,opts) specifies additional computation options. To
create opts, use h2synOptions.

[K,CL,gamma,info] = h2syn( ___ ) returns a structure containing additional information about
the H2 synthesis computation. You can use this argument with any of the previous syntaxes.

Examples

Stabilizing Controller for MIMO Plant

Stabilize a 5-by-4 unstable plant with three states, two measurement signals, and one control signal.

In practice, P is an augmented plant that you have constructed by combining a model of the system to
control with appropriate H2 weighting functions. For this example, use the following model.

A = [5    6    -6
     6    0     5
    -6    5     4];
B = [0     4     0     0
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     1     1    -2    -2
     4     0     0    -3];
C = [-6     0     8
     0     5     0
    -2     1    -4
     4    -6    -5
     0   -15     7];
D = [0     0     0     0
     0     0     0     1
     0     0     0     0
     0     0     3     6
     8     0    -7     0];
P = ss(A,B,C,D);

Confirm that P is unstable by examining its poles, some of which lie in the right half-plane.

pole(P)

ans = 3×1

   -8.5648
    6.8612
   10.7036

Design the stabilizing controller. h2syn assumes that the nmeas measurement signals and the ncont
control signals are the last outputs and last inputs of P, respectively.

nmeas = 2;
ncont = 1;
[K,CL,gamma] = h2syn(P,nmeas,ncont);

Examine the closed-loop system to confirm that the controller K stabilizes the plant.

pole(CL)

ans = 6×1 complex

 -31.6236 + 0.0000i
 -12.6460 + 3.8045i
 -12.6460 - 3.8045i
  -9.6073 + 0.0000i
  -9.2393 + 0.0000i
  -8.6939 + 0.0000i

Mixed-Sensitivity H2 Loop Shaping

Shape the singular value plots of the sensitivity S = (I + GK)−1 and complementary sensitivity
T = GK(I + GK)−1.

To do so, find a stabilizing controller K that minimizes the H2 norm of:
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Assume the following plant and weights:

G(s) = s− 1
s− 2, W1 = 0 . 1

100s + 1, W2 = 0 . 1, W3 = 0 .

Using those values, construct the augmented plant P, as illustrated in the mixsyn reference page.

s = zpk('s');
G = 10*(s-1)/(s+1)^2;
G.u = 'u2';
G.y = 'y';

W1 = 0.1/(100*s+1); 
W1.u = 'y2';
W1.y = 'y11';

W2 = tf(0.1); 
W2.u = 'u2';
W2.y = 'y12';

S = sumblk('y2 = u1 - y');
 
P = connect(G,S,W1,W2,{'u1','u2'},{'y11','y12','y2'});

Use h2syn to generate the controller. This system has one measurement signal and one control
signal, which are the last output and input of P, respectively.

[K,CL,gamma] = h2syn(P,1,1);

Examine the resulting loop shapes.

L = G*K; 
S = inv(1+L); 
T = 1-S;
sigmaplot(L,'k-.',S,'r',T,'g')
legend('open-loop','sensitivity','closed-loop')
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Input Arguments
P — Plant
dynamic system model

Plant, specified as a dynamic system model such as a state-space (ss) model. P can be any LTI model
with inputs [w;u] and outputs [z;y], where:

• w represents the disturbance inputs.
• u represents the control inputs.
• z represents the error outputs to be kept small.
• y represents the measurement outputs provided to the controller.

Construct P such that measurement outputs y are the last outputs, and the control inputs u are the
last inputs.

The function converts P to a state-space model of the form:

dx = Ax + B1w + B2u
z = C1x + D11w + D12u
y = C2x + D21w + D22u .
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If P is a generalized state-space model with uncertain or tunable control design blocks, then the
function uses the nominal or current value of those elements.

Conditions on P

For the H2 synthesis problem to be solvable, (A,B2) must be stabilizable, and (A,C2) must be
detectable. The plant is further restricted in that P12 and P21 must have no zeros on the imaginary
axis (continuous-time plants) or the unit circle (discrete-time plants). In continuous time, this
restriction means that

A− jω B2
C1 D12

has full column rank for all frequencies ω. By default, h2syn automatically adds extra disturbances
and errors to the plant to ensure that the restriction on P12 and P21 is met. This process is called
regularization. If you are certain your plant meets the conditions, you can turn off regularization
using the Regularize option of h2synOptions.

nmeas — Number of measurement outputs
1 (default) | nonnegative integer

Number of measurement output signals in the plant, specified as a nonnegative integer. The function
takes the last nmeas plant outputs as the measurements y. The returned controller K has nmeas
inputs.

ncont — Number of control inputs
1 (default) | nonnegative integer

Number of control input signals in the plant, specified as a nonnegative integer. The function takes
the last ncont plant inputs as the controls u. The returned controller K has ncont outputs.

opts — Options
h2synOptions object

Additional options for the computation, specified as an options set you create using h2synOptions.
Available options include turning off automatic scaling and regularization. For more information, see
h2synOptions.

Output Arguments
K — Controller
ss model object

Controller, returned as a state-space (ss) model object. The controller stabilizes P and has the same
number of states as P. The controller has nmeas inputs and ncont outputs.

CL — Closed-loop transfer function
ss model object | []

Closed-loop transfer function, returned as a state-space (ss) model object or []. The closed-loop
transfer function is CL = lft(P,K) as in the following diagram.
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gamma — Controller performance
nonnegative scalar

Controller performance, returned as a nonnegative scalar value. This value is the performance
achieved using the returned controller K, and is the H2 norm of CL (see norm).

info — Synthesis data
structure

Additional synthesis data, returned as a structure. info has the following fields.

Field Description
X Solution of state-feedback Riccati equation, returned as a matrix.
Y Solution of observer Riccati equation, returned as a matrix.
Ku State feedback gain of in the observer form of controller K returned as a

matrix. For more information about the observer-form controller, see
“Tips” on page 1-188.

Lx,Lu Observer gains of the observer form of controller K, returned as
matrices. For more information about the observer-form controller, see
“Tips” on page 1-188.

Preg Regularized plant used for h2syn computation, returned as a state-space
(ss) model object. By default, h2syn automatically adds extra
disturbances and errors to the plant to ensure that it meets certain
conditions (see the input argument P). The field info.Preg contains the
resulting plant model.

NORMS Costs for the synthesized controller, returned in a vector of the form [FI
OE DF FC], where:

• FI is the full-information control cost.
• OE is the output-estimation cost.
• DF is the disturbance-feedforward cost.
• FC is full control cost.

These quantities are related by FI^2 + OE^2 = DF^2 + FC^2 =
gamma^2. For more details on these norms, see sections 14.8 and 14.9 of
[1].
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Field Description
KFI Full-information state-feedback gain, returned as a matrix. The full-

information problem assumes full knowledge of the state x and
disturbance w, and looks for an optimal state-feedback control of the
form:

• u(t) = KFI*[x(t);w(t)] in continuous time. In continuous time,
u depends only on x. The entries in KFI corresponding to w are zero.

• u[k] = KFI*[x[k];w[k]] in discrete time.

For more information, see section 14.8 of [1].
GFI Full-information closed-loop transfer from w to z with the controller KFI,

returned as a state-space (ss) model. The H2 norm of GFI is FI.
HAMX,HAMY X Hamiltonian matrix (state feedback) and Y Hamiltonian matrix (Kalman

filter). These values are provided for reference, but h2syn does not use
them to compute the Riccati solutions. Instead, h2syn uses the implicit
solvers icare and idare.

Tips
• h2syn gives you state-feedback gain and observer gains that you can use to express the controller

in observer form. The observer form of the controller K is:

dxe = Axe + B2u + Lxe
u = Kuxe + Lue .

Here, the innovation term e is:

e = y − C2xe− D22u .

h2syn returns the state-feedback gain Ku and the observer gains Lx and Lu as fields in the info
output argument.

You can use this form of the controller for gain scheduling in Simulink. To do so, tabulate the plant
matrices and the controller gain matrices as a function of the scheduling variables using the
Matrix Interpolation block. Then, use the observer form of the controller to update the controller
variables as the scheduling variables change.

• Do not choose weighting functions with poles very close to s = 0 (z = 1 for discrete-time systems).
For instance, although it might seem sensible to choose W = 1/s to enforce zero steady-state error,
doing so introduces an unstable pole that cannot be stabilized, causing synthesis to fail. Instead,
choose W = 1/(s + δ). The value δ must be small but not very small compared to system dynamics.
For instance, for best numeric results, if your target crossover frequency is around 1 rad/s, choose
δ = 0.0001 or 0.001. Similarly, in discrete time, choose sample times such that system and
weighting dynamics are not more than a decade or two below the Nyquist frequency.

Algorithms
h2syn uses the methods described in Chapter 14 of [1].
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References
[1] Zhou, K., Doyle, J., Glover, K, Robust and Optimal Control. Upper Saddle River, NJ: Prentice Hall,

1996.

See Also
hinfsyn | h2synOptions | mixsyn | loopsyn | ncfsyn | norm

Introduced before R2006a
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h2synOptions
Option set for h2syn

Syntax
opts = h2synOptions
opts = h2synOptions(Name,Value)

Description
opts = h2synOptions creates the default options set for the h2syn command.

opts = h2synOptions(Name,Value) creates an option set with the options specified by one or
more Name,Value pair arguments.

Examples

Turn Off Regularization for H2 Synthesis

Create an option set for the h2syn command that turns off automatic regularization of the plant.
Turning off regularization can speed up the computation when you know your problem is far from
singular.

You can use Name,Value pairs to create the option set.

opts = h2synOptions('Regularize','off');

Alternatively, create a default options set and use dot notation to change the option value.

opts = h2synOptions;
opts.Regularize = 'off';

You can now use opts as an input argument to h2syn.

Input Arguments
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'AutoScale','on','Regularize','off'

AutoScale — Automatic plant scaling
'on' (default) | 'off'

Automatic plant scaling, specified as the comma-separated pair consisting of 'AutoScale' and one
of the following:
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• 'on' — h2syn automatically scales the plant states, controls, and measurements to improve
numerical accuracy. h2syn always returns the controller K in the original unscaled coordinates.

• 'off' — h2syn does not change the plant scaling. Turning off scaling when you know your plant
is well scaled can speed up the computation.

Example: opts = h2synOptions('AutoScale','off') creates an option set for h2syn that
turns off automatic scaling.

Regularize — Automatic regularization
'on' (default) | 'off'

Automatic regularization of the plant, specified as the comma-separated pair consisting of
'Regularize' and one of the following:

• 'on' — h2syn automatically regularizes the plant to enforce requirements on P12 and P21 (see
h2syn). Regularization is a process of adding extra disturbances and errors to handle singular
problems.

• 'off' — h2syn does not regularize the plant. Turning off regularization can speed up the
computation when you know your problem is far enough from singular.

Example: opts = h2synOptions('Regularize','off') creates an option set for h2syn that
turns off regularization.

Output Arguments
opts — Options for h2syn
h2syn options object

Options for the h2syn computation, returned as an h2syn options object. Use the object as an input
argument to h2syn. For example:

[K,CL,gamma,info] = h2syn(P,nmeas,ncont,opts);

See Also
h2syn

Introduced in R2019a
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hankelmr
Hankel minimum degree approximation (MDA) without balancing

Syntax
GRED = hankelmr(G)

GRED = hankelmr(G,order)

[GRED,redinfo] = hankelmr(G,key1,value1,...)

[GRED,redinfo] = hankelmr(G,order,key1,value1,...)

Description
hankelmr returns a reduced order model GRED of G and a struct array redinfo containing the error
bound of the reduced model and Hankel singular values of the original system.

The error bound is computed based on Hankel singular values of G. For a stable system Hankel
singular values indicate the respective state energy of the system. Hence, reduced order can be
directly determined by examining the system Hankel SV's, σι.

With only one input argument G, the function will show a Hankel singular value plot of the original
model and prompt for model order number to reduce.

This method guarantees an error bound on the infinity norm of the additive error ∥G-GRED∥ ∞ for
well-conditioned model reduced problems [1]:

G− Gred ∞ ≤ 2 ∑
k + 1

n
σi

Note It seems this method is similar to the additive model reduction routines balancmr and
schurmr, but actually it can produce more reliable reduced order model when the desired reduced
model has nearly controllable and/or observable states (has Hankel singular values close to machine
accuracy). hankelmr will then select an optimal reduced system to satisfy the error bound criterion
regardless the order one might naively select at the beginning.

This table describes input arguments for hankelmr.

Argument Description
G LTI model to be reduced (without any other inputs will plot its Hankel singular

values and prompt for reduced order)
ORDER (Optional) an integer for the desired order of the reduced model, or optionally a

vector packed with desired orders for batch runs

A batch run of a serial of different reduced order models can be generated by specifying order =
x:y, or a vector of integers. By default, all the anti-stable part of a system is kept, because
from control stability point of view, getting rid of unstable state(s) is dangerous to model a system.
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'MaxError' can be specified in the same fashion as an alternative for 'ORDER'. In this case, reduced
order will be determined when the sum of the tails of the Hankel sv's reaches the 'MaxError'.

Argument Value Description
'MaxError' Real number or vector of different

errors
Reduce to achieve H∞ error.

When present, 'MaxError' overrides
ORDER input.

'Weights' {Wout,Win} cell array Optimal 1x2 cell array of LTI weights
Wout (output) and Win (input). Default
for both is identity. Weights must be
invertible.

'Display' 'on' or 'off' Display Hankel singular plots (default
'off').

'Order' Integer, vector or cell array Order of reduced model. Use only if not
specified as 2nd argument.

Weights on the original model input and/or output can make the model reduction algorithm focus on
some frequency range of interests. But weights have to be stable, minimum phase and invertible.

This table describes output arguments.

Argument Description
GRED LTI reduced order model. Become multi-dimensional array when input is a serial

of different model order array.
REDINFO A STRUCT array with 4 fields:

• REDINFO.ErrorBound (bound on ∥ G-GRED ∥∞)
• REDINFO.StabSV (Hankel SV of stable part of G)
• REDINFO.UnstabSV (Hankel SV of unstable part of G)
• REDINFO.Ganticausal (Anti-causal part of Hankel MDA)

G can be stable or unstable, continuous or discrete.

Note If size(GRED) is not equal to the order you specified. The optimal Hankel MDA algorithm has
selected the best Minimum Degree Approximate it can find within the allowable machine accuracy.

Examples
Given a continuous or discrete, stable or unstable system, G, the following commands can get a set of
reduced order models based on your selections:

rng(1234,'twister'); 
G = rss(30,5,4);
[g1, redinfo1] = hankelmr(G); % display Hankel SV plot
                             % and prompt for order (try 15:20)
[g2, redinfo2] = hankelmr(G,20); 
[g3, redinfo3] = hankelmr(G,[10:2:18]);
[g4, redinfo4] = hankelmr(G,'MaxError',[0.01, 0.05]);
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for i = 1:4
    figure(i); eval(['sigma(G,g' num2str(i) ');']);
end

“Singular Value Bode Plot of G (30-state, 5 outputs, 4 inputs)” on page 1-194 shows a singular value
Bode plot of a random system G with 20 states, 5 output and 4 inputs. The error system between G
and its Zeroth order Hankel MDA has it infinity norm equals to an all pass function, as shown in “All-
Pass Error System Between G and Zeroth Order G Anticausal” on page 1-195.

The Zeroth order Hankel MDA and its error system sigma plot are obtained via commands

[g0,redinfo0] = hankelmr(G,0);
sigma(G-redinfo0.Ganticausal)

This interesting all-pass property is unique in Hankel MDA model reduction.

Singular Value Bode Plot of G (30-state, 5 outputs, 4 inputs)
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All-Pass Error System Between G and Zeroth Order G Anticausal

Algorithms
Given a state-space (A,B,C,D) of a system and k, the desired reduced order, the following steps will
produce a similarity transformation to truncate the original state-space system to the kth order
reduced model.

1 Find the controllability and observability grammians P and Q.
2 Form the descriptor

E = QP − ρ2I

where σk > ρ ≥ σk + 1, and descriptor state-space

Take SVD of descriptor E and partition the result into kth order truncation form

Es− A B
C D

= ρ2AT + QAP QB
CP D

E = UE1, UE2
ΣE0 0
0 0

VE1
T

VE2
T

3 Apply the transformation to the descriptor state-space system above we have
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A11 A12
A21 A22

=
UE1

T

UE2
T

(ρ2AT + QAP) VE1 VE2

B1
B2

=
UE1

T

UE2
T QB −CT

C1 C2 =
CP

−ρBT VE1 VE2

D1 = D
4 Form the equivalent state-space model.

A B
C D

= ∑E
−1 (A11− A12A22†A21) ∑E

−1 (B1− A12A22†B2)

C1− C2A22†A21 D1− C2A22†B2

The final kth order Hankel MDA is the stable part of the above state-space realization. Its
anticausal part is stored in redinfo.Ganticausal.

The proof of the Hankel MDA algorithm can be found in [2]. The error system between the original
system G and the Zeroth Order Hankel MDA G0 is an all-pass function [1].

References

[1] Glover, K., “All Optimal Hankel Norm Approximation of Linear Multivariable Systems, and Their
L∝-error Bounds,” Int. J. Control, vol. 39, no. 6, pp. 1145-1193, 1984.

[2] Safonov, M.G., R.Y. Chiang, and D.J.N. Limebeer, “Optimal Hankel Model Reduction for
Nonminimal Systems,” IEEE Trans. on Automat. Contr., vol. 35, no. 4, April 1990, pp.
496-502.

See Also
reduce | balancmr | schurmr | bstmr | ncfmr | hankelsv

Introduced before R2006a
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hankelsv
Compute Hankel singular values for stable/unstable or continuous/discrete system

Syntax
[sv_stab,sv_unstab] = hankelsv(G,ErrorType,style)
hankelsv(G)
hankelsv(G,ErrorType,style)

Description
[sv_stab,sv_unstab] = hankelsv(G,ErrorType,style) returns a column vector SV_STAB
containing the Hankel singular values of the stable part of G and SV_UNSTAB of anti-stable part (if it
exists). The Hankel SV's of anti-stable part ss(a,b,c,d) is computed internally via ss(-a,-
b,c,d). Discrete model is converted to continuous one via the bilinear transform.

hankelsv(G) with no output arguments draws a bar graph of the Hankel singular values such as the
following:

To generate the bar graph with specified error type and style, use
hankelsv(G,ErrorType,style). This table describes optional input arguments for hankelsvd.
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Argument Value Description
ERRORTYPE 'add'

'mult'

'ncf'

Regular Hankel SV's of G

Hankel SV's of phase matrix

Hankel SV's of coprime factors
STYLE 'abs'

'log'

Absolute value

logarithm scale

Algorithms
If ErrorType = 'add', then hankelsv implements the numerically robust square root method to
compute the Hankel singular values [1]. Its algorithm goes as follows:

Given a stable model G, with controllability and observability grammians P and Q, compute the SVD of
P and Q:

[Up,Sp,Vp] = svd(P);
[Uq,Sq,Vq] = svd(Q);

Then form the square roots of the grammians:

Lr = Up*diag(sqrt(diag(Sp)));
Lo = Uq*diag(sqrt(diag(Sq)));

The Hankel singular values are simply:

σH =svd(Lo'*Lr);

This method takes advantage of the robust SVD algorithm and ensures the computations stay well
within the square root of the machine accuracy.

If ErrorType = 'mult', then hankelsv computes the Hankel singular value of the phase matrix of
G [2].

If ErrorType = 'ncf', then hankelsv computes the Hankel singular value of the normalized
coprime factor pair of the model [3].

References

[1] Safonov, M.G., and R.Y. Chiang, “A Schur Method for Balanced Model Reduction,” IEEE Trans. on
Automat. Contr., vol. AC-2, no. 7, July 1989, pp. 729-733.

[2] Safonov, M.G., and R.Y. Chiang, “Model Reduction for Robust Control: A Schur Relative Error
Method,” International J. of Adaptive Control and Signal Processing, Vol. 2, pp. 259-272,
1988.

[3] Vidyasagar, M., Control System Synthesis - A Factorization Approach. London: The MIT Press,
1985.

See Also
reduce | balancmr | schurmr | bstmr | ncfmr | hankelmr
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hinffc
Full-control H-infinity synthesis

Syntax
[K,CL,gamma] = hinffc(P,nmeas)
[K,CL,gamma] = hinffc(P,nmeas,gamTry)
[K,CL,gamma] = hinffc(P,nmeas,gamRange)
[K,CL,gamma] = hinffc( ___ ,opts)
[K,CL,gamma,info] = hinffc( ___ )

Description
Full-control synthesis assumes the controller can directly affect both the state vector x and the error
signal z. Synthesis with hinffc is the dual of the full-information problem covered by hinffi. For
general H∞ synthesis, use hinfsyn.

[K,CL,gamma] = hinffc(P,nmeas) computes the H∞-optimal control law

u =
u1
u2

= Ky

for the plant P. The plant is described by the state-space equations:

dx = Ax + B1w + u1
z = C1x + D11w + u2

y = C2x + D21w .

Here,

• w represents the disturbance inputs
• u1 represents the inputs that affect the state vector
• u2 represents the inputs that affect the error
• z represents the error outputs to be kept small
• y represents the measurement outputs

nmeas is the number of measurements y, which must be the last outputs of P. The gain matrix K
minimizes the H∞ norm of the closed-loop transfer function CL from the disturbance signals w to the
error signals z.

[K,CL,gamma] = hinffc(P,nmeas,gamTry) calculates a gain matrix for the target performance
level gamTry. Specifying gamTry can be useful when the optimal achievable performance is better
than you need for your application. In that case, a less-than-optimal solution can have smaller gains
and be more numerically well-conditioned. If gamTry is not achievable, hinffc returns [] for K and
CL, and Inf for gamma.

[K,CL,gamma] = hinffc(P,nmeas,gamRange) searches the range gamRange for the best
achievable performance. Specify the range with a vector of the form [gmin,gmax]. Limiting the
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search range can speed up computation by reducing the number of iterations performed to test
different performance levels.

[K,CL,gamma] = hinffc( ___ ,opts) specifies additional computation options. To create opts,
use hinfsynOptions. Specify opts after all other input arguments.

[K,CL,gamma,info] = hinffc( ___ ) returns a structure containing additional information about
the H∞ synthesis computation. You can use this argument with any of the previous syntaxes.

Input Arguments
P — Plant
LTI model

Plant, specified as an LTI model such as a state-space (ss) model. If P is a generalized state-space
model with uncertain or tunable control design blocks, then hinffc uses the nominal or current
value of those elements.

Construct P so that it has the partitioned form

dx = Ax + B1w + u1
z = C1x + D11w + u2

y = C2x + D21w .

Here,

• w represents the disturbance inputs
• u1 represents the inputs that affect the state vector
• u2 represents the inputs that affect the error
• z represents the error outputs to be kept small
• y represents the measurement outputs

Construct P such that the nmeas measurement outputs are the last outputs.

For information about conditions imposed on the plant matrices and how the software addresses
them, see hinfsyn.

nmeas — Number of measurements
nonnegative integer

Number of measurement output signals in the plant, specified as a nonnegative integer. hinffc takes
the last nmeas plant outputs as the measurements y. The returned gain matrix K has nmeas inputs.

gamTry — Target performance level
positive scalar

Target performance level, specified as a positive scalar. hinffc attempts to compute a gain matrix
such that the H∞ of the closed-loop system does not exceed gamTry. If this performance level is
achievable, then the returned gain matrix has gamma ≤ gamTry. If gamTry is not achievable, hinffc
returns an empty matrix.

gamRange — Performance range for search
[0,Inf] (default) | vector of form [gmin,gmax]
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Performance range for search, specified as a vector of the form [gmin,gmax]. The hinffc command
tests only performance levels within that range. It returns a gain matrix with performance:

• gamma ≤ gmin, when gmin is achievable.
• gmin < gamma < gmax, when gmax is achievable and but gmin is not.
• gamma = Inf when gmax is not achievable. In this case, hinffc returns [] for K and CL.

If you know a range of feasible performance levels, specifying this range can speed up computation
by reducing the number of iterations performed by hinffc to test different performance levels.

opts — Options
hinfsynOptions object

Additional options for the computation, specified as an options object you create using
hinfsynOptions. Available options include displaying algorithm progress at the command line,
turning off automatic scaling and regularization, and specifying an optimization method. For more
information, see hinfsynOptions.

Output Arguments
K — Gain matrix
matrix | []

Gain matrix, returned as a matrix or []. The gain-matrix dimensions are nu-by-nmeas, where nu is the
number of states plus the number of error outputs of P (outputs not included in nmeas).

If you supply gamTry or gamRange and the specified performance values are not achievable, then K
= [].

CL — Closed-loop transfer function
ss model object | []

Closed-loop transfer function, returned as a state-space (ss) model object or []. The returned
performance level gamma is the H∞ norm of CL.

If you supply gamTry or gamRange and the specified performance levels are not achievable, then CL
= [].

gamma — Closed-loop performance
nonnegative scalar | Inf

Closed-loop performance, returned as a nonnegative scalar value or Inf. This value is the H∞ norm of
CL. If you do not provide performance levels to test using gamTry or gamRange, then gamma is the
best achievable performance level.

If you provide gamTry or gamRange, then gamma is the actual performance level achieved by the gain
matrix computed for the best passing performance level that the function tries. If the specified
performance levels are not achievable, then gamma = Inf.

info — Synthesis data
structure | []

Additional synthesis data, returned as a structure or [] (if the specified performance level is not
achievable). info has the following fields.
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Field Description
gamma Performance level used to compute the gain matrix K, returned as a

nonnegative scalar. Typically, hinffc tests multiple target performance
levels and returns a gain matrix corresponding to the best passing
performance level (see the Algorithms section of hinfsyn for details).
The value info.gamma is an upper limit on the actual achieved
performance returned as the output argument gamma.

Y Riccati solution Y∞ for the performance level info.gamma, returned as
matrix. For more information, see the Algorithms section of hinfsyn.

Preg Regularized plant used for hinffc computation, returned as a state-
space (ss) model object. By default, hinffc automatically adds extra
disturbances and errors to the plant to ensure that it meets certain
conditions (see the Algorithms section of hinfsyn). The field info.Preg
contains the resulting plant model.

Algorithms
For information about the algorithms used for H∞ synthesis, see hinfsyn.

References
[1] Doyle, J.C., K. Glover, P. Khargonekar, and B. Francis. "State-space solutions to standard H2 and H∞

control problems." IEEE Transactions on Automatic Control, Vol 34, Number 8, August 1989,
pp. 831–847.

See Also
hinfsynOptions | hinffi | hinfsyn

Introduced in R2018b
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hinffi
Full-information H-infinity synthesis

Syntax
[K,CL,gamma] = hinffi(P,ncont)
[K,CL,gamma] = hinffi(P,ncont,gamTry)
[K,CL,gamma] = hinffi(P,ncont,gamRange)
[K,CL,gamma] = hinffi( ___ ,opts)
[K,CL,gamma,info] = hinffi( ___ )

Description
Full-information synthesis assumes the controller has access to both the state vector x and the
disturbance signal w. Synthesis with hinffi is the dual of the full-control problem covered by
hinffc. For the more general output-feedback case when only output measurements are available,
use hinfsyn.

[K,CL,gamma] = hinffi(P,ncont) computes the H∞-optimal control law

u = K
x
w

for the plant P. The plant is described by the state-space equations:

dx = Ax + B1w + B2u
z = C1x + D11w + D12u .

Here, w represents the disturbance inputs, and z represents the error outputs to be kept small.

ncont is the number of control inputs u, which must be the last inputs of P. The gain matrix K
minimizes the H∞ norm of the closed-loop transfer function CL from the disturbance signals w to the
error signals z.

[K,CL,gamma] = hinffi(P,ncont,gamTry) calculates a gain matrix for the target performance
level gamTry. Specifying gamTry can be useful when the optimal achievable performance is better
than you need for your application. In that case, a less-than-optimal solution can have smaller gains
and be more numerically well-conditioned. If gamTry is not achievable, hinffi returns [] for K and
CL, and Inf for gamma.

[K,CL,gamma] = hinffi(P,ncont,gamRange) searches the range gamRange for the best
achievable performance. Specify the range with a vector of the form [gmin,gmax]. Limiting the
search range can speed up computation by reducing the number of iterations performed to test
different performance levels.

[K,CL,gamma] = hinffi( ___ ,opts) specifies additional computation options. To create opts,
use hinfsynOptions. Specify opts after all other input arguments.

[K,CL,gamma,info] = hinffi( ___ ) returns a structure containing additional information about
the H∞ synthesis computation. You can use this argument with any of the previous syntaxes.
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Input Arguments
P — Plant
LTI model

Plant, specified as an LTI model such as a state-space (ss) model. If P is a generalized state-space
model with uncertain or tunable control design blocks, then hinffi uses the nominal or current
value of those elements.

Construct P so that it has the partitioned form

dx = Ax + B1w + B2u
z = C1x + D11w + D12u .

Here, w represents the disturbance inputs, and z represents the error outputs to be kept small. The
ncont control inputs u are the last inputs.

For information about conditions imposed on the plant matrices and how the software addresses
them, see hinfsyn.

ncont — Number of controls
nonnegative integer

Number of control input signals in the plant, specified as a nonnegative integer. hinffi takes the
last ncont plant inputs as the control u. The returned gain matrix K has ncont outputs.

gamTry — Target performance level
positive scalar

Target performance level, specified as a positive scalar. hinffi attempts to compute a gain matrix
such that the H∞ of the closed-loop system does not exceed gamTry. If this performance level is
achievable, then the returned gain matrix has gamma ≤ gamTry. If gamTry is not achievable, hinffi
returns an empty matrix.

gamRange — Performance range for search
[0,Inf] (default) | vector of form [gmin,gmax]

Performance range for search, specified as a vector of the form [gmin,gmax]. The hinffi command
tests only performance levels within that range. It returns a gain matrix with performance:

• gamma ≤ gmin, when gmin is achievable.
• gmin < gamma < gmax, when gmax is achievable and but gmin is not.
• gamma = Inf when gmax is not achievable. In this case, hinffi returns [] for K and CL.

If you know a range of feasible performance levels, specifying this range can speed up computation
by reducing the number of iterations performed by hinffi to test different performance levels.

opts — Options
hinfsynOptions object

Additional options for the computation, specified as an options object you create using
hinfsynOptions. Available options include displaying algorithm progress at the command line,
turning off automatic scaling and regularization, and specifying an optimization method. For more
information, see hinfsynOptions.
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Output Arguments
K — Gain matrix
matrix | []

Gain matrix, returned as a matrix or []. The gain-matrix dimensions are ncont-by-ny where ny is the
number of states plus the number disturbance inputs of P (inputs not included in ncont).

If you supply gamTry or gamRange and the specified performance values are not achievable, then K
= [].

CL — Closed-loop transfer function
ss model object | []

Closed-loop transfer function, returned as a state-space (ss) model object or []. The returned
performance level gamma is the H∞ norm of CL.

If you supply gamTry or gamRange and the specified performance levels are not achievable, then CL
= [].

gamma — Closed-loop performance
nonnegative scalar | Inf

Closed-loop performance, returned as a nonnegative scalar value or Inf. This value is the H∞ norm of
CL. If you do not provide performance levels to test using gamTry or gamRange, then gamma is the
best achievable performance level.

If you provide gamTry or gamRange, then gamma is the actual performance level achieved by the gain
matrix computed for the best passing performance level that the function tries. If the specified
performance levels are not achievable, then gamma = Inf.

info — Synthesis data
structure | []

Additional synthesis data, returned as a structure or [] (if the specified performance level is not
achievable). info has the following fields

Field Description
gamma Performance level used to compute the gain matrix K, returned as a

nonnegative scalar. Typically, hinffi tests multiple target performance
levels and returns a gain matrix corresponding to the best passing
performance level (see the Algorithms section of hinfsyn for details). The
value info.gamma is an upper limit on the actual achieved performance
returned as the output argument gamma.

X Riccati solution X∞ for the performance level info.gamma, returned as a
matrix. For more information, see the Algorithms section of hinfsyn.

Preg Regularized plant used for hinffi computation, returned as a state-space
(ss) model object. By default, hinffi automatically adds extra
disturbances and errors to the plant to ensure that it meets certain
conditions (see the Algorithms section of hinfsyn). The field info.Preg
contains the resulting plant model.
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Algorithms
For information about the algorithms used for H∞ synthesis, see hinfsyn.

References
[1] Doyle, J.C., K. Glover, P. Khargonekar, and B. Francis. "State-space solutions to standard H2 and H∞

control problems." IEEE Transactions on Automatic Control, Vol 34, Number 8, , August 1989,
pp. 831–847.

See Also
hinfsynOptions | hinffc | hinfsyn

Introduced in R2018b
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hinfgs
Synthesis of gain-scheduled H∞ controllers

Syntax
[gopt,pdK,R,S] = hinfgs(pdP,r,gmin,tol,tolred)

Description
Given an affine parameter-dependent plant

P
ẋ = A(p)x + B1(p)w + B2u

z = C1(p)x + D11(p)w + D12u
y = C2x + D21w + D22u

where the time-varying parameter vector p(t) ranges in a box and is measured in real time, hinfgs
seeks an affine parameter-dependent controller

K
ζ̇ = AK(p)ζ + BK(p)y
u = CK(p)ζ + DK(P)y

scheduled by the measurements of p(t) and such that

• K stabilizes the closed-loop system

for all admissible parameter trajectories p(t)
• K minimizes the closed-loop quadratic H∞ performance from w to z.

The description pdP of the parameter-dependent plant P is specified with psys and the vector r gives
the number of controller inputs and outputs (set r=[p2,m2] if y ∊ Rp2 and u ∊ Rm2). Note that
hinfgs also accepts the polytopic model of P returned, e.g., by aff2pol.

hinfgs returns the optimal closed-loop quadratic performance gopt and a polytopic description of
the gain-scheduled controller pdK. To test if a closed-loop quadratic performance γ is achievable, set
the third input gmin to γ. The arguments tol and tolred control the required relative accuracy on
gopt and the threshold for order reduction. Finally, hinfgs also returns solutions R, S of the
characteristic LMI system.
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Controller Implementation
The gain-scheduled controller pdK is parametrized by p(t) and characterized by the values KΠj of
AK(p) BK(p)
CK(p) DK(p)

 at the corners ³j of the parameter box. The command

Kj = psinfo(pdK,'sys',j)

returns the j-th vertex controller KΠj while

pv = psinfo(pdP,'par') 
vertx = polydec(pv) 
Pj = vertx(:,j)

gives the corresponding corner ³j of the parameter box (pv is the parameter vector description).

The controller scheduling should be performed as follows. Given the measurements p(t) of the
parameters at time t,

1 Express p(t) as a convex combination of the ³j:

p(t) = α131 + … + αN3N,  α j ≥ 0, ∑
i = 1

N
α j = 1

This convex decomposition is computed by polydec.
2 Compute the controller state-space matrices at time t as the convex combination of the vertex

controllers KΠj:

AK(t) BK(t)
CK(t) DK(t)

= ∑
i = 1

N
α jKΠι .

3 Use AK(t), BK(t), CK(t), DK(t) to update the controller state-space equations.

References
Apkarian, P., P. Gahinet, and G. Becker, “Self-Scheduled H∞ Control of Linear Parameter-Varying
Systems,” Automatica, 31 (1995), pp. 1251–1261.

Becker, G., Packard, P., “Robust Performance of Linear-Parametrically Varying Systems Using
Parametrically-Dependent Linear Feedback,” Systems and Control Letters, 23 (1994), pp. 205–215.

Packard, A., “Gain Scheduling via Linear Fractional Transformations,” Syst. Contr. Letters, 22 (1994),
pp. 79–92.

See Also
psys | polydec

Introduced before R2006a
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hinfnorm
H∞ norm of dynamic system

Syntax
ninf = hinfnorm(sys)
ninf = hinfnorm(sys,tol)
[ninf,fpeak] = hinfnorm( ___ )

Description
ninf = hinfnorm(sys) returns the H∞ norm in absolute units of the dynamic system model, sys.

• If sys is a stable SISO system, then the H∞ norm is the peak gain, the largest value of the
frequency response magnitude.

• If sys is a stable MIMO system, then the H∞ norm is the largest singular value across frequencies.
• If sys is an unstable system, then the H∞ norm is defined as Inf.
• If sys is a model that has tunable or uncertain parameters, then hinfnorm evaluates the H∞ norm

at the current or nominal value of sys.
• If is a model array, then hinfnorm returns an array of the same size as sys, where ninf(k) =

hinfnorm(sys(:,:,k)) .

For stable systems, hinfnorm(sys) is the same as getPeakGain(sys).

ninf = hinfnorm(sys,tol) returns the H∞ norm of sys with relative accuracy tol.

[ninf,fpeak] = hinfnorm( ___ ) also returns the frequency, fpeak, at which the peak gain or
largest singular value occurs. You can use this syntax with any of the input arguments in previous
syntaxes. If sys is unstable, then fpeak = Inf.

Examples

Norm of MIMO System

Compute the H∞ norm of the following 2-input, 2-output dynamic system and the frequency at which
the peak singular value occurs.

G s =
0 3s

s2 + s + 10
s + 1
s + 5

2
s + 6

.

G = [0 tf([3 0],[1 1 10]);tf([1 1],[1 5]),tf(2,[1 6])];
[ninf,fpeak] = hinfnorm(G)

ninf = 3.0150

fpeak = 3.1623
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The H∞ norm of a MIMO system is its maximum singular value. Plot the singular values of G and
compare the result from hinfnorm.

sigma(G),grid

The values ninf and fpeak are consistent with the singular value plot, which displays the values in
dB.

Input Arguments
sys — Input dynamic system
dynamic system model | model array

Input dynamic system, specified as any dynamic system model or model array. sys can be SISO or
MIMO.

tol — Relative accuracy
0.01 (default) | positive real scalar

Relative accuracy of the peak gain, specified as a positive real scalar value. hinfnorm calculates
ninf such that the fractional difference between ninf and the true H∞ norm of sys is no greater
than tol.
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Output Arguments
ninf — H∞ norm of dynamic system
Inf | scalar | array

H∞ norm of sys, returned as Inf, a scalar value, or an array.

• If sys is a single stable model, then ninf is a scalar value.
• If sys is a single unstable model, then ninf is Inf.
• If sys is a model array, then ninf is an array of the same size as sys, where ninf(k) =

hinfnorm(sys(:,:,k)).

fpeak — Frequency of peak gain or largest singular value
Inf | nonnegative real scalar | array

Frequency at which the peak gain or largest singular value occurs, returned as Inf, a nonnegative
real scalar value, or an array. The frequency is expressed in units of rad/TimeUnit, relative to the
TimeUnit property of sys.

• If sys is a single stable model, then fpeak is a scalar.
• If sys is a single unstable model, then fpeak is Inf.
• If sys is a model array, then fpeak is an array of the same size as sys.In this case, fpeak(k) is

the peak gain or largest singular value frequency of the kth model in the array.

See Also
getPeakGain | freqresp | sigma | norm

Introduced in R2013b
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hinfstruct
H∞ tuning of fixed-structure controllers

Syntax
CL = hinfstruct(CL0)
[CL,gamma,info] = hinfstruct(CL0)
[CL,gamma,info] = hinfstruct(CL0,options)
[C,gamma,info] = hinfstruct(P,C0,options)

Description
The hinfstruct command extends classical H∞ synthesis (see hinfsyn) to fixed-structure control
systems. If you are unfamiliar with constructing weighting functions to capture design requirements
for H∞ synthesis, use systune or looptune instead.

CL = hinfstruct(CL0) tunes the free parameters of the tunable genss model CL0. This tuning
minimizes the H∞ norm of the closed-loop transfer function modeled by CL0. The model CL0
represents a closed-loop control system that includes tunable components such as controllers or
filters. CL0 can also include weighting functions that capture design requirements.

[CL,gamma,info] = hinfstruct(CL0) returns gamma (the minimum H∞ norm) and a data
structure info with additional information about each optimization run.

[CL,gamma,info] = hinfstruct(CL0,options) specifies additional options for the optimizer
using hinfstructOptions.

[C,gamma,info] = hinfstruct(P,C0,options) tunes the parametric controller blocks C0. This
tuning minimizes the H∞ norm of the closed-loop system CL0 = lft(P,C0). To use this syntax,
express your control system and design requirements as a Standard Form model, as in the following
illustration.
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P is a numeric LTI model that includes the fixed elements of the control architecture. P can also
include weighting functions that capture design requirements. C0 can be a single tunable component
(for example, a Control Design Block or a genss model) or a cell array of multiple tunable
components. C is a parametric model or cell array of parametric models of the same type or types as
C0.

Examples

Tune Fixed-Structure Control System

Tune the controller elements of the following control system.

The control elements are C, which is a PI controller with two free parameters, and F, which is a low-
pass filter in the feedback path with one free parameter. For this example, load the plant G, a ninth-
order model of the head disk assembly (HDA) in a hard disk drive.

load hinfstruct_demo G
bode(G), grid
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Tune the free parameters of this control system so that the head position y tracks a step change r
with a response time of about 1 ms, little or no overshoot, and no steady-state error.

First, create the tunable elements. Use a tunablePID object to parameterize the PI block, and
specify the filter F0 as a transfer function depending on a tunable real parameter a.

C0 = tunablePID('C','pi');  

a = realp('a',1); 
F0 = tf(a,[1 a]);

F0 is a genss model.

Next, express the design goals as weights on the plant model, and append them to the closed-loop
system. For reasons described in detail in “Fixed-Structure H-infinity Synthesis with hinfstruct”, the
following configuration of weighting functions achieves the design requirements for this problem.
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Here, LS is the desired shape of the open-loop response L(s) = F(s)G(s)C(s).

wc = 1000;  % target crossover
s = tf('s');
LS = (1+0.001*s/wc)/(0.001+s/wc);

As discussed in “Fixed-Structure H-infinity Synthesis with hinfstruct”, the design requirements are
satisfied if the Η∞ norm of this control structure is less than 1.

Use connect to construct a genss model representing this control structure.

% Label the block I/Os
Wn = 1/LS;  Wn.u = 'nw';  Wn.y = 'n';
We = LS;    We.u = 'e';   We.y = 'ew';
C0.u = 'e';   C0.y = 'u';
F0.u = 'yn';  F0.y = 'yf';

% Specify summing junctions
Sum1 = sumblk('e = r - yf');
Sum2 = sumblk('yn = y + n');

% Connect the blocks together
T0 = connect(G,Wn,We,C0,F0,Sum1,Sum2,{'r','nw'},{'y','ew'});

You can now use hinfstruct to find tuned values of the tunable parameters in C0 and F0 that
minimize the Η∞ norm of T0. To reduce the risk of finding local minima, run six optimizations, started
from randomized initial values for C0 and F0. The RandomStart option of hinfstructOptions
specifies how many additional optimizations to run beyond the default one.

rng('default')
opt = hinfstructOptions('Display','final','RandomStart',5);
T = hinfstruct(T0,opt);

Final: Peak gain = 3.88, Iterations = 67
Final: Peak gain = 597, Iterations = 181
       Some closed-loop poles are marginally stable (decay rate near 1e-07)
Final: Peak gain = 597, Iterations = 176
       Some closed-loop poles are marginally stable (decay rate near 1e-07)
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Final: Peak gain = 3.88, Iterations = 68
Final: Peak gain = 1.56, Iterations = 102
Final: Peak gain = 1.56, Iterations = 96

The best closed-loop gain is about 1.56, so the constraint ‖T‖∞ < 1 is nearly satisfied. The
hinfstruct command returns the tuned closed-loop transfer T(s). To validate the design, plot the
tuned open-loop response L = F*G*C and compare it with the target loop shape LS. To compute L,
use getBlockValue to get the tuned value of C(s) and use getValue to evaluate the filter F(s) for
the tuned value of a.

C = getBlockValue(T,'C');
F = getValue(F0,T.Blocks);  % Propagate tuned parameters from T to F

L = G*C*F;
bode(LS,'r--',G*C*F,'b',{1e1,1e6}), grid, 
title('Open-Loop Response'), legend('Target','Actual')

The 0 dB crossover frequency and overall loop shape are as expected. For further analysis of the
result, see “Fixed-Structure H-infinity Synthesis with hinfstruct”.

Input Arguments
CL0 — Closed-loop system with tunable elements
genss model
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Closed-loop system with tunable elements, specified as a genss model. This model describes the
closed-loop transfer function of a control system, incorporating appropriate weighting functions on
the plant inputs and outputs to capture your design requirements. For more information about
selecting weights for H∞ tuning, see “Formulating Design Requirements as H-Infinity Constraints”.

CL0 includes both the fixed and tunable components of the control system. You represent the tunable
components of the control system using tunable control design blocks, which are stored in the
CL0.Blocks property of the genss model. For more information about constructing this generalized
model, see “Build Tunable Closed-Loop Model for Tuning with hinfstruct”. hinfstruct tunes the
tunable elements of CL0 to minimize the H∞ norm.

P — Fixed elements of control architecture
numeric LTI model

Fixed elements of the control architecture, specified as a numeric LTI model such as a state-space
(ss) model. P is the plant (along with any weighting functions to capture design requirements) that
results from expressing your system in standard form, pulling any tunable elements into the block-
diagonal controller as shown in the following diagram.

You can obtain P in two ways:

• In MATLAB, model the fixed elements of your control system as numeric LTI models. Then, use
block-diagram building functions (such as connect and feedback) to build P from the modeled
components. Also, include any weighting functions that represent your design requirements.

• If you have a Simulink model of your control system and have Simulink Control Design™, use
linlft to obtain a linear model of the fixed elements of your control system. The linlft
command linearizes your Simulink model, excluding specified Simulink blocks (the blocks that
represent the controller elements you want to tune). If you use weighting functions to represent
your design requirements, connect them in series with the linear model of your plant to obtain P.

P can be a continuous-time or discrete-time model. In discrete time, the sample time must be
specified (Ts ≠ –1), and must match the sample time of C0.

1 Functions

1-218



C0 — Tunable elements of control architecture
tunable control design block | genss model | cell array of tunable blocks or tunable models

Tunable elements of the control architecture in standard form, specified as one of the following:

• A tunable control design block such as tunableSS, tunableGain, or tunablePID
• A generalized state-space (genss)
• A cell array in which each entry is a tunable block or genss model

For more information and examples of creating tunable models, see “Models with Tunable
Coefficients”.

C0 can be a continuous-time or discrete-time model, as long as the sample time matches that of P.

options — Algorithm options
hinfstructOptions options set

Algorithm options, specified as an hinfstructOptions options set. For information about available
options, see hinfstructOptions.

Output Arguments
CL — Tuned closed-loop system
genss

Tuned closed-loop system, returned as a generalized state-space (genss) model. CL is the tuned
version of CL0.

The hinfstruct command tunes the free parameters of CL0 to achieve a minimum H∞ norm.
CL.Blocks contains the same control design blocks as CL0.Blocks, except that in CL, the
parameters have tuned values.

To access the tuned parameter values, use getValue. You can also access them directly in
CL.Blocks.

C — Tuned controller elements
tunable control design block | genss model | cell array of tunable blocks or tunable models

Tuned controller elements, returned as a tunable control design block, a genss model, or a cell array
of tunable blocks or tunable models. C is returned in the same format as C0, and contains the same
tunable blocks, except that in C, the parameters have tuned values.

gamma — Best achieved H∞ norm
positive scalar

Best achieved H∞ norm of the closed-loop system, returned as a positive scalar.

When you set the hinfstructOptions option RandomStarts to a nonzero value, hinfstruct
performs more than one minimization run. In that case, gamma is the smallest H∞ norm achieved over
all runs.

info — Detailed results from each optimization run
structure | structure array
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Detailed results from each optimization run, returned as a structure, or a structure array if the
hinfstructOptions option RandomStarts is nonzero. In that case, each entry in the array is the
results structure for the corresponding optimization run. The fields of info are:

• Objective — Minimum H∞ norm value for each run. When RandomStarts = 0, Objective =
gamma.

• Iterations — Number of iterations before convergence for each run.
• TunedBlocks — Tuned control design blocks for each run. TunedBlocks differs from C in that C

contains only the result from the best run. When RandomStarts = 0, TunedBlocks = C.

Tips
• hinfstruct is related to hinfsyn, which also uses H∞ techniques to design a controller for a

MIMO plant. However, unlike hinfstruct, hinfsyn imposes no restriction on the structure and
order of the controller. For that reason, hinfsyn always returns a smaller gamma than
hinfstruct. You can therefore use hinfsyn to obtain a lower bound on the best achievable
performance.

• Using hinfstruct requires some familiarity with H∞ techniques. You must express your design
requirements as frequency-weighting functions on plant inputs and outputs, as described in
“Formulating Design Requirements as H-Infinity Constraints”. For a simpler approach to fixed-
structure tuning, use systune or looptune.

Algorithms
hinfstruct uses specialized nonsmooth optimization techniques to enforce closed-loop stability and
minimize the H∞ norm as a function of the tunable parameters. These techniques are based on the
work in [1].

hinfstruct computes the H∞ norm using the algorithm of [2] and structure-preserving eigensolvers
from the SLICOT library. For more information about the SLICOT library, see http://slicot.org.

References
[1] Apkarian, Pierre, and Dominikus Noll. "Nonsmooth H∞ Synthesis." IEEE Transactions on

Automatic Control, 51, no. 1 (January 2006): 71–86. https://doi.org/10.1109/TAC.2005.860290.

[2] Bruinsma, N.A., and M. Steinbuch. "A Fast Algorithm to Compute the H∞ Norm of a Transfer
Function Matrix." Systems & Control Letters, 14, no.4 (April 1990): 287–93. https://doi.org/
10.1016/0167-6911(90)90049-Z.

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

To run in parallel, set 'UseParallel' to true using hinfstructOptions.

See Also
hinfstructOptions | hinfsyn | getValue | genss | systune | looptune
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Topics
“Fixed-Structure H-infinity Synthesis with hinfstruct”
“Build Tunable Closed-Loop Model for Tuning with hinfstruct”
“What Is hinfstruct?”
“Formulating Design Requirements as H-Infinity Constraints”
“Structured H-Infinity Synthesis Workflow”
“Models with Tunable Coefficients”

Introduced in R2010b
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hinfstructOptions
Set options for hinfstruct

Syntax
options = hinfstructOptions
options = hinfstructOptions(Name,Value)

Description
options = hinfstructOptions returns the default option set for the hinfstruct command.

options = hinfstructOptions(Name,Value) creates an option set with the options specified by
one or more Name,Value pair arguments.

Input Arguments
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

hinfstructOptions takes the following Name arguments:

Display

Determines the amount of information to display during hinfstruct optimization runs.

Display takes the following values:

• 'off' — hinfstruct runs in silent mode, displaying no information during or after the run.
• 'iter' — Display optimization progress after each iteration. The display includes the value of the

closed-loop H∞ norm after each iteration. The display also includes a Progress value indicating
the percent change in the H∞ norm from the previous iteration.

• 'final' — Display a one-line summary at the end of each optimization run. The display includes
the minimized value of the closed-loop H∞ norm and the number of iterations for each run.

Default: 'final'

MaxIter

Maximum number of iterations in each optimization run.

Default: 300

RandomStart

Number of additional optimizations starting from random values of the free parameters in the
controller.
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If RandomStart = 0, hinfstruct performs a single optimization run starting from the initial
values of the tunable parameters. Setting RandomStart = N > 0 runs N additional optimizations
starting from N randomly generated parameter values.

hinfstruct finds a local minimum of the gain minimization problem. To increase the likelihood of
finding parameter values that meet your design requirements, set RandomStart > 0. You can then
use the best design that results from the multiple optimization runs.

Use with UseParallel = true to distribute independent optimization runs among MATLAB
workers (requires Parallel Computing Toolbox™ software).

Default: 0

UseParallel

Parallel processing flag.

Set to true to enable parallel processing by distributing randomized starts among workers in a
parallel pool. If there is an available parallel pool, then the software performs independent
optimization runs concurrently among workers in that pool. If no parallel pool is available, one of the
following occurs:

• If Automatically create a parallel pool is selected in your Parallel Computing Toolbox
preferences (Parallel Computing Toolbox), then the software starts a parallel pool using the
settings in those preferences.

• If Automatically create a parallel pool is not selected in your preferences, then the software
performs the optimization runs successively, without parallel processing.

If Automatically create a parallel pool is not selected in your preferences, you can manually start
a parallel pool using parpool before running the tuning command.

Using parallel processing requires Parallel Computing Toolbox software.

Default: false

TargetGain

Target H∞ norm.

The hinfstruct optimization stops when the H∞ norm (peak closed-loop gain) falls below the
specified TargetGain value.

Set TargetGain = 0 to optimize controller performance by minimizing the peak closed-loop gain.
Set TargetGain = Inf to just stabilize the closed-loop system.

Default: 0

TolGain

Relative tolerance for termination. The optimization terminates when the H∞ norm decreases by less
than TolGain over 10 consecutive iterations. Increasing TolGain speeds up termination, and
decreasing TolGain yields tighter final values.

Default: 0.001
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MaxFrequency

Maximum closed-loop natural frequency.

Setting MaxFrequency constrains the closed-loop poles to satisfy |p| <  MaxFrequency.

To let hinfstruct choose the closed-loop poles automatically based upon the system's open-loop
dynamics, set MaxFrequency = Inf. To prevent unwanted fast dynamics or high-gain control, set
MaxFrequency to a finite value.

Specify MaxFrequency in units of 1/TimeUnit, relative to the TimeUnit property of the system you
are tuning.

Default: Inf

MinDecay

Minimum decay rate for closed-loop poles

Constrains the closed-loop poles to satisfy Re(p) < -MinDecay. Increase this value to improve the
stability of closed-loop poles that do not affect the closed-loop gain due to pole/zero cancellations.

Specify MinDecay in units of 1/TimeUnit, relative to the TimeUnit property of the system you are
tuning.

Default: 1e-7

Output Arguments
options

Option set containing the specified options for the hinfstruct command.

Examples

Create Options Set for hinfstruct

Create an options set for a hinfstruct run using three random restarts and a stability offset of
0.001. Also, configure the hinfstruct run to stop as soon as the closed-loop gain is smaller than 1.

 options = hinfstructOptions('TargetGain',1,...
                          'RandomStart',3,'StableOffset',1e-3);

Alternatively, use dot notation to set the values of options.

options = hinfstructOptions;
options.TargetGain = 1;
options.RandomStart = 3;
options.StableOffset = 1e-3;

1 Functions

1-224



Configure Option Set for Parallel Optimization Runs

Configure an option set for a hinfstruct run using 20 random restarts. Execute these independent
optimization runs concurrently on multiple workers in a parallel pool.

If you have the Parallel Computing Toolbox software installed, you can use parallel computing to
speed up hinfstruct tuning of fixed-structure control systems. When you run multiple randomized
hinfstruct optimization starts, parallel computing speeds up tuning by distributing the
optimization runs among workers.

If Automatically create a parallel pool is not selected in your Parallel Computing Toolbox
preferences (Parallel Computing Toolbox), manually start a parallel pool using parpool. For
example:

parpool;

If Automatically create a parallel pool is selected in your preferences, you do not need to
manually start a pool.

Create an hinfstructOptions set that specifies 20 random restarts to run in parallel.

options = hinfstructOptions('RandomStart',20,'UseParallel',true);

Setting UseParallel to true enables parallel processing by distributing the randomized starts
among available workers in the parallel pool.

Use the hinfstructOptions set when you call hinfstruct. For example, suppose you have
already created a tunable closed loop model CL0. In this case, the following command uses parallel
computing to tune CL0.

[CL,gamma,info] = hinfstruct(CL0,options);

See Also
hinfstruct

Introduced in R2010b
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hinfsyn
Compute H-infinity optimal controller

Syntax
[K,CL,gamma] = hinfsyn(P,nmeas,ncont)
[K,CL,gamma] = hinfsyn(P,nmeas,ncont,gamTry)
[K,CL,gamma] = hinfsyn(P,nmeas,ncont,gamRange)
[K,CL,gamma] = hinfsyn( ___ ,opts)
[K,CL,gamma,info] = hinfsyn( ___ )

Description
[K,CL,gamma] = hinfsyn(P,nmeas,ncont) computes a stabilizing H∞-optimal controller K for
the plant P. The plant has a partitioned form

z
y

=
P11 P12
P21 P22

w
u

,

where:

• w represents the disturbance inputs.
• u represents the control inputs.
• z represents the error outputs to be kept small.
• y represents the measurement outputs provided to the controller.

nmeas and ncont are the number of signals in y and u, respectively. y and u are the last outputs and
inputs of P, respectively. hinfsyn returns a controller K that stabilizes P and has the same number of
states. The closed-loop system CL = lft(P,K) achieves the performance level gamma, which is the
H∞ norm of CL (see hinfnorm).

[K,CL,gamma] = hinfsyn(P,nmeas,ncont,gamTry) calculates a controller for the target
performance level gamTry. Specifying gamTry can be useful when the optimal controller
performance is better than you need for your application. In that case, a less-than-optimal controller
can have smaller gains and be more numerically well-conditioned. If gamTry is not achievable,
hinfsyn returns [] for K and CL, and Inf for gamma.

[K,CL,gamma] = hinfsyn(P,nmeas,ncont,gamRange) searches the range gamRange for the
best achievable performance. Specify the range with a vector of the form [gmin,gmax]. Limiting the
search range can speed up computation by reducing the number of iterations performed by hinfsyn
to test different performance levels.

[K,CL,gamma] = hinfsyn( ___ ,opts) specifies additional computation options. To create opts,
use hinfsynOptions. Specify opts after all other input arguments.

[K,CL,gamma,info] = hinfsyn( ___ ) returns a structure containing additional information
about the H∞ synthesis computation. You can use this argument with any of the previous syntaxes.
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Examples

H-Infinity Controller Synthesis

Synthesize a controller using different target performance levels. The plant in this example is based
on the augmented plant model used in “Robust Control of an Active Suspension”. Load the plant.

load hinfsynExData P
size(P)

State-space model with 5 outputs, 4 inputs, and 9 states.

This plant has five outputs and four inputs, where the last two outputs are measurement signals to
provide to the controller, and the last input is a control signal. Compute an H∞-optimal controller.

ncont = 1; 
nmeas = 2; 
[K1,CL,gamma] = hinfsyn(P,nmeas,ncont);

The resulting two-input, one-output controller has the same number of states as P.

size(K1)

State-space model with 1 outputs, 2 inputs, and 9 states.

The optimal performance level achieved by this controller is returned as gamma. This value is the H∞
norm of the closed-loop system CL.

gamma

gamma = 0.9405

You can examine the singular value plot of the closed-loop system to confirm that its largest singular
value does not exceed gamma.

sigma(CL,ss(gamma))
ylim([-120,20]);
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Controller Synthesis with Target Performance Level

For controllers that are close to optimal performance, controller gains can sometimes get large. If you
know that your application does not require the optimal achievable performance level, you can limit
the range of γ values that hinfsyn tests. Suppose you know that γ ≈ 1 . 5 is good enough for your
application. Using the same plant as in the example “H-Infinity Controller Synthesis” on page 1-227,
compute a controller using a target performance range of [1.4,1.6]. Turn on the display to see the
progress of the computation.

load hinfsynExData P
ncont = 1; 
nmeas = 2; 

opts = hinfsynOptions('Display','on');
gamRange = [1.4 1.6];
[K,CL,gamma,info] = hinfsyn(P,nmeas,ncont,gamRange,opts);

  Test bounds:  1.4 <=  gamma  <=  1.6

   gamma        X>=0        Y>=0       rho(XY)<1    p/f
  1.60e+00     4.9e-07     1.7e-20     1.462e-02     p
  1.50e+00     5.0e-07     0.0e+00     1.681e-02     p
  1.45e+00     5.0e-07     0.0e+00     1.803e-02     p
  1.42e+00     5.0e-07     0.0e+00     1.868e-02     p
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  1.41e+00     5.0e-07     0.0e+00     1.902e-02     p

  Best performance (actual): 0.946

The display shows all the performance levels tested by hinfsyn. In this case, all tested performance
levels pass the tests that hinfsyn applies for closed-loop stability (see “Algorithms” on page 1-235).
Although the smallest tested level is 1.41, the controller returned for that value achieves an actual
performance level of gamma, which is about 0.95. The smallest tested level is returned in the gamma
field of the info structure.

info.gamma

ans = 1.4117

If you try to obtain a performance level that is not achievable with any controller, the display informs
you that the target is too small, and returns an empty controller and closed-loop system. For example,
suppose you try to achieve a performance level of 0.75.

gamTry = 0.75

gamTry = 0.7500

[K,CL,gamma] = hinfsyn(P,nmeas,ncont,gamTry,opts)

Specified upper limit GMAX=0.75 is too small, needs to be greater than 0.94.

K =

     []

CL =

     []

gamma = Inf

Mixed-Sensitivity Synthesis

Design a mixed-sensitivity controller for the following plant, augmented by the following loop-shaping
filters (see mixsyn).

G(s) = s− 1
s + 1, W1 = 0 . 1(s + 100)

100s + 1 , W2 = 0 . 1, no W3 .

Define the plant, weighting filters, and augmented plant.

s = zpk('s');
G = (s-1)/(s+1);
W1 = 0.1*(s+100)/(100*s+1); 
W2 = 0.1; 
W3 = [];
P = augw(G,W1,W2,W3);

Synthesize the controller.
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[K,CL,gamma] = hinfsyn(P,1,1);
gamma

gamma = 0.1831

For this system, gamma is about 0.18, or about –15 dB.

Examine the singular values of the closed-loop result.

sigma(CL,ss(gamma))

Compute a new controller for the same system with no W1.

W1 = [];
P = augw(G,W1,W2,W3);
[K,CL,gamma] = hinfsyn(P,1,1);

In this case, the resulting controller K is zero, and the closed-loop transfer function CL = K*(1+G*K)
is also zero.

Input Arguments
P — Plant
dynamic system model
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Plant, specified as a dynamic system model such as a state-space (ss) model. P can be any LTI model
with inputs [w;u] and outputs [z;y], where:

• w represents the disturbance inputs.
• u represents the control inputs.
• z represents the error outputs to be kept small.
• y represents the measurement outputs provided to the controller.

Construct P such that measurement outputs y are the last outputs, and the control inputs u are the
last inputs.

The function converts P to a state-space model of the form:

dx = Ax + B1w + B2u
z = C1x + D11w + D12u
y = C2x + D21w + D22u .

If P is a generalized state-space model with uncertain or tunable control design blocks, then hinfsyn
uses the nominal or current value of those elements.

One application of H∞ control is direct shaping of closed-loop singular value plots of control systems.
In such applications, you augment the plant inputs and outputs with weighting functions (loop-
shaping filters) that represent control objectives that you want the H∞ controller to satisfy. For a
detailed example that constructs such a partitioned, augmented plant for H∞ synthesis, see “Robust
Control of an Active Suspension”. For further information, see “Mixed-Sensitivity Loop Shaping”.
Conditions on P

For the H∞ synthesis problem to be solvable, (A,B2) must be stabilizable, and (A,C2) must be
detectable. For the default Riccati method, the plant is further restricted in that P12 and P21 must
have no zeros on the imaginary axis (continuous-time plants) or the unit circle (discrete-time plants).
In continuous time, this restriction means that

A− jω B2
C1 D12

has full column rank for all frequencies ω. By default, hinfsyn automatically adds extra disturbances
and errors to the plant to ensure that the restriction on P12 and P21 is met. This process is called
regularization. If you are certain your plant meets the conditions, you can turn off regularization
using the Regularize option of hinfsynOptions.

nmeas — Number of measurement outputs
1 (default) | nonnegative integer

Number of measurement output signals in the plant, specified as a nonnegative integer. The function
takes the last nmeas plant outputs as the measurements y. The returned controller K has nmeas
inputs.

ncont — Number of control inputs
1 (default) | nonnegative integer

Number of control input signals in the plant, specified as a nonnegative integer. The function takes
the last ncont plant inputs as the controls u. The returned controller K has ncont outputs.
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gamTry — Target performance level
positive scalar

Target performance level, specified as a positive scalar. hinfsyn attempts to compute a controller
such that the H∞ of the closed-loop system does not exceed gamTry. If this performance level is
achievable, then the returned controller has gamma ≤ gamTry. If gamTry is not achievable, hinfsyn
returns an empty controller.

gamRange — Performance range for search
[0,Inf] (default) | vector of form [gmin,gmax]

Performance range for search, specified as a vector of the form [gmin,gmax]. The hinfsyn
command tests only performance levels within that range. It returns a controller with performance:

• gamma ≤ gmin, when gmin is achievable.
• gmin < gamma < gmax, when gmax is achievable and but gmin is not.
• gamma = Inf when gmax is not achievable. In this case, hinfsyn returns [] for K and CL.

If you know a range of feasible performance levels, specifying this range can speed up computation
by reducing the number of iterations performed by hinfsyn to test different performance levels.

opts — Additional options
hinfsynOptions object

Additional options for the computation, specified as an options object you create using
hinfsynOptions. Available options include:

• Display algorithm progress at the command line.
• Turn off automatic scaling and regularization.
• Specify an optimization method.

For information about all options, see hinfsynOptions.

Output Arguments
K — Controller
ss model object | []

Controller, returned as a state-space (ss) model object or []. The controller stabilizes P and has the
same number of states as P. The controller has nmeas inputs and ncont outputs.

If you supply gamTry or gamRange and the specified performance values are not achievable, then K
= [].

CL — Closed-loop transfer function
ss model object | []

Closed-loop transfer function, returned as a state-space (ss) model object or []. The closed-loop
transfer function is given by CL = lft(P,K) as in the following diagram.
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The returned performance level gamma is the H∞ norm of CL.

If you supply gamTry or gamRange and the specified performance levels are not achievable, then CL
= [].

gamma — Controller performance
nonnegative scalar | Inf

Controller performance, returned as a nonnegative scalar value or Inf. This value is the performance
achieved using the returned controller K, and is the H∞ norm of CL (see hinfnorm). If you do not
provide performance levels to test using gamTry or gamRange, then gamma is the best achievable
performance level.

If you provide gamTry or gamRange, then gamma is the actual performance level achieved by the
controller computed for the best passing performance level that hinfsyn tries. If the specified
performance levels are not achievable, then gamma = Inf.

info — Synthesis data
structure | []

Additional synthesis data, returned as a structure or [] (if the specified performance level is not
achievable). For the default Riccati-based synthesis method, info has the following fields.

Field Description
gamma Performance level used to compute the controller K, returned as a

nonnegative scalar. Typically, hinfsyn tests multiple target performance
levels and returns a controller corresponding to the best passing
performance level (see “Algorithms” on page 1-235). The value
info.gamma is an upper limit on the actual achieved performance
returned as the output argument gamma.

X,Y Riccati solutions X∞ and Y∞ for the performance level info.gamma,
returned as nonnegative scalars. For more information, see “Algorithms”
on page 1-235 and [5].

Ku,Kw State feedback gains of controller K expressed in observer form,
returned as matrices. For more information about the observer-form
controller, see “Tips” on page 1-235.
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Field Description
Lx,Lu Observer gains of controller K expressed in observer form, returned as

matrices. For more information about the observer-form controller, see
“Tips” on page 1-235.

Preg Regularized plant used for hinfsyn computation, returned as a state-
space (ss) model object. By default, hinfsyn automatically adds extra
disturbances and errors to the plant to ensure that it meets certain
conditions (see the input argument P). The field info.Preg contains the
resulting plant model.

AS All-solutions controller on page 1-234 parameterization, returned as a
state-space (ss) model object.

For the LMI-based synthesis method, info contains the best performance gamma and the
corresponding LMI solutions R and S. (Use hinfsynOptions to change the synthesis method.)

More About
All-solutions controller

In general, the solution to the infinity-norm optimal control problem is nonunique. The controller
returned by hinfsyn is only one particular solution, K. For the default Riccati-based method,
info.AS contains the all-solution controller parameterization KAS. All solutions with closed-loop
performance of γ or less are parameterized by a free stable contraction map Q, which is constrained
by Q ∞ < γ.

In other words, the solutions include every stabilizing controller K(s) that makes

Ty1u1 ∞ ≜ sup
ω

σmax Ty1u1( jω) < γ .

Here, Ty1u1 is the closed-loop transfer function CL. These controllers K(s) are given by:

Ks = lft(info.AS,Q)

where Q is a stable LTI system satisfying norm(Q,Inf) < info.gamma.
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Tips
• hinfsyn gives you state-feedback gains and observer gains that you can use to express the

controller in observer form. The observer form of the controller K is:

dxe = Axe + B1we + B2u + Lxe
u = Kuxe + Lue

we = Kwxe .

Here, we is an estimate of the worst-case perturbation and the innovation term e is given by:

e = y − C2xe− D21we− D22u .

hinfsyn returns the state-feedback gains Ku and Kw and the observer gains Lx and Lu as fields in
the info output argument.

You can use this form of the controller for gain scheduling in Simulink. To do so, tabulate the plant
matrices and the controller gain matrices as a function of the scheduling variables using the
Matrix Interpolation block. Then, use the observer form of the controller to update the controller
variables as the scheduling variables change.

Algorithms
By default, hinfsyn uses the two-Riccati formulae ([1],[2]) with loop shifting [3]. You can use
hinfsynOptions to change to an LMI-based method ([4],[5],[6]). You can also specify a maximum-
entropy method. In that method, hinfsyn returns the H∞ controller that maximizes an entropy
integral relating to the point S0. For continuous-time systems, this integral is:

Entropy =  γ2

2π∫−∞
∞

ln detI − γ−2Ty1u1( jω)′Ty1u1( jω)
so2

s02 + ω2 dω

where Ty1u1 is the closed-loop transfer function CL. A similar integral is used for discrete-time
systems.

For all methods, the function uses a standard γ-iteration technique to determine the optimal value of
the performance level γ. γ-iteration is a bisection algorithm that starts with high and low estimates of
γ and iterates on γ values to approach the optimal H∞ control design.

At each value of γ, the algorithm tests a γ value to determine whether a solution exists. In the Riccati-
based method, the algorithm computes the smallest performance level for which the stabilizing
Riccati solutions X = X∞/γ and Y = Y∞/γ exist. For any γ greater than that performance level and in the
range gamRange, the algorithm evaluates the central controller formulas (K formulas) and checks the
closed-loop stability of CL = lft(P,K). This step is equivalent to verifying the conditions:

• min(eig(X)) ≥ 0
• min(eig(Y)) ≥ 0
• rho(XY) < 1, where the spectral radius rho(XY) = max(abs(eig(XY)))

A γ that meets these conditions passes. The stopping criterion for the bisection algorithm requires
the relative difference between the last γ value that failed and the last γ value that passed be less
than 0.01. (You can change this criterion using hinfsynOptions.) hinfsyn returns the controller
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corresponding to the smallest tested γ value that passes. For discrete-time controllers, the algorithm
performs additional computations to construct the feedthrough matrix DK.

Use the Display option of hinfsynOptions to make hinfsyn display values showing which of the
conditions are satisfied for each γ value tested.

The algorithm works best when the following conditions are satisfied by the plant:

• D12 and D21 have full rank.
• A− jωI B2

C1 D12
 has full column rank for all ω ∊ R.

• A− jωI B1
C2 D21

 has full row rank for all ω ∊ R.

When these rank conditions do not hold, the controller may have undesirable properties. If D12 and
D21 are not full rank, then the H∞ controller K might have large high-frequency gain. If either of the
latter two rank conditions does not hold at some frequency ω, the controller might have very lightly
damped poles near that frequency.

Compatibility Considerations
Name,Value options are not recommended
Not recommended starting in R2018b

As of R2018b, using Name,Value syntax to specify options for hinfsyn is not recommended.
Instead, to set a target performance range, use the gamRange input argument. For other options,
create an options set with hinfsynOptions.

The following table shows how to update your calls to hinfsyn to use the recommended ways of
specifying options.

Not Recommended Recommended
[K,CL,GAM] =
hinfsyn(___,'GMIN',gmin,'GMAX',gmax)

[K,CL,GAM] = hinfsyn(___,gamRange)

[K,CL,GAM] = hinfsyn(___,'TOLGAM',tol) opts = hinfsynOptions('RelTol',tol);
[K,CL,GAM] = hinfsyn(___,opts);

[K,CL,GAM] =
hinfsyn(___,'METHOD',meth)

opts = hinfsynOptions('Method',meth);
[K,CL,GAM] = hinfsyn(___,opts);

[K,CL,GAM] =
hinfsyn(___,'DISPLAY','on')

opts = hinfsynOptions('Display','on');
[K,CL,GAM] = hinfsyn(___,opts);

For more information, see hinfsynOptions.

info output argument changed
Behavior changed in R2018b

The fields of the optional output argument info changed in R2018b. Prior to that release, info was
a structure with the following fields.
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AS All-solutions controller parameterization, scaled so that Q ∞ < 1

KFI Full information gain matrix (constant feedback)

u2(t) = KFI
x(t)
u1(t)

KFC Full control gain matrix (constant output-injection; KFC is the dual of KFI)
GAMFI H∞ cost for full information KFI

GAMFC H∞ cost for full control KFC

info.AS is still available, but its scaling has changed. See “Scaling of info.AS” on page 1-237.

For the remaining fields, the following functions are recommended instead:

• info.KFI, info.GAMFI — Use hinffi for full-information synthesis.
• info.KFC, info.GAMFC — Use hinffc for full-control synthesis.

These fields are hidden in the info argument returned by hinfsyn. However, you can still access
them using dot notation. For instance:

[K,CL,gamma,info] = hinfsyn(P,nmeas,ncont);
gfi = info.GAMFI;
gfc = info.GAMFC;

Scaling of info.AS

Prior to R2018b, the all-solutions controller parameterization info.AS was scaled so that the free
stable contraction map Q was constrained by Q ∞ < 1. In R2018b, the scaling of info.AS has
changed, so that the constraint on Q is Q ∞ < γ, where γ is info.gamma. This new constraint
ensures that the all-solutions controller KAS has a finite limit as gamTry → ∞.

References
[1] Glover, K., and J.C. Doyle. "State-space formulae for all stabilizing controllers that satisfy an H∞

norm bound and relations to risk sensitivity." Systems & Control Letters, Vol. 11, Number 8,
1988, pp. 167–172.

[2] Doyle, J.C., K. Glover, P. Khargonekar, and B. Francis. "State-space solutions to standard H2 and H∞
control problems." IEEE Transactions on Automatic Control, Vol 34, Number 8, August 1989,
pp. 831–847.

[3] Safonov, M.G., D.J.N. Limebeer, and R.Y. Chiang. "Simplifying the H∞ Theory via Loop Shifting,
Matrix Pencil and Descriptor Concepts." Int. J. Contr., Vol. 50, Number 6, 1989, pp.
2467-2488.

[4] Packard, A., K. Zhou, P. Pandey, J. Leonhardson, and G. Balas. "Optimal, constant I/O similarity
scaling for full-information and state-feedback problems." Systems & Control Letters, Vol. 19,
Number 4, 1992, pp. 271–280.

[5] Gahinet, P., and P. Apkarian. "A linear matrix inequality approach to H∞-control." Int. J. Robust and
Nonlinear Control, Vol. 4, Number. 4, 1994, pp. 421–448.

 hinfsyn

1-237



[6] Iwasaki, T., and R.E. Skelton. "All controllers for the general H∞-control problem: LMI existence
conditions and state space formulas." Automatica, Vol. 30, Number 8, 1994, pp. 1307–1317.

See Also
hinfsynOptions | augw | mixsyn | h2syn | loopsyn | ncfsyn | hinffc | hinffi

Topics
“Robust Control of an Active Suspension”
“Mixed-Sensitivity Loop Shaping”
“H-Infinity Performance”

Introduced before R2006a

1 Functions

1-238



hinfsynOptions
Option set for hinfsyn and mixsyn

Syntax
opts = hinfsynOptions
opts = hinfsynOptions(Name,Value)

Description
opts = hinfsynOptions creates the default option set for the hinfsyn and mixsyncommands.

opts = hinfsynOptions(Name,Value) creates an option set with the options specified by one or
more Name,Value pair arguments.

Examples

Specify Algorithm and Display for H-Infinity Synthesis

Use the LMI-based algorithm to compute an H∞-optimal controller for a plant with one control signal
and two measurement signals. Turn on the display that shows the progress of the computation. Use
hinfsynOptions to specify these algorithm options.

Load the plant and specify the numbers of measurements and controls.

load hinfsynExData P
ncont = 1; 
nmeas = 2; 

Create an options set for hinfsyn that specifies the LMI-based algorithm and turns on the display.

opts = hinfsynOptions('Method','LMI','Display','on');

Alternatively, start with the default options set, and use dot notation to change option values.

opts = hinfsynOptions;
opts.Method = 'LMI';
opts.Display = 'on';

Compute the controller.

[K,CL,gamma] = hinfsyn(P,nmeas,ncont,opts);

 Minimization of gamma:

 Solver for linear objective minimization under LMI constraints 

 Iterations   :    Best objective value so far 
 
     1
     2                 223.728733
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     3                 138.078240
     4                 138.078240
     5                  74.644885
     6                  48.270221
     7                  48.270221
     8                  48.270221
     9                  19.665676
    10                  19.665676
    11                  11.607238
    12                  11.607238
    13                  11.607238
    14                   4.067958
    15                   4.067958
    16                   4.067958
    17                   2.154349
    18                   2.154349
    19                   2.154349
    20                   1.579564
    21                   1.579564
    22                   1.579564
    23                   1.236727
    24                   1.236727
    25                   1.236727
    26                   0.993344
    27                   0.993344
    28                   0.949319
    29                   0.949319
    30                   0.949319
    31                   0.945762
    32                   0.944063
    33                   0.941246
    34                   0.941246
    35                   0.940604
***                 new lower bound:     0.931668

 Result:  feasible solution of required accuracy
          best objective value:     0.940604
          guaranteed absolute accuracy:  8.94e-03
          f-radius saturation:  0.405% of R =  1.00e+08 
 
 Optimal Hinf performance:  9.397e-01 

Input Arguments
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Display','on','RelTol',0.05

General Options

Display — Display progress and generate report
'off' (default) | 'on'
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Display optimization progress and generate report in the command window, specified as the comma-
separated pair consisting of 'Display' and 'on' or 'off'. The contents of the display depend on
the value of the 'Method' option.

For 'Method' = 'RIC', the display shows the range of performance targets (gamma values) tested.
For each gamma, the display shows:

• The smallest eigenvalues of the normalized Riccati solutions X = X∞/γ and Y = Y∞/γ
• The spectral radius rho(XY) = max(abs(eig(XY)))
• A pass/fail (p/f) flag indicating whether that gamma value satisfies the conditions X ≥ 0, Y ≥ 0,

and rho(XY) < 1
• The best achieved gamma performance value

For more information about the displayed information, see the Algorithms section of hinfsyn.

For 'Method' = 'LMI', the display shows the best achieved gamma value for each iteration of the
optimization problem. It also displays a report of the best achieved value and other parameters of the
computation.
Example: opts = hinfsynOptions('Display','on') creates an option set that turns the
progress display on.

Method — Optimization algorithm
'RIC' (default) | 'LMI'

Optimization algorithm that hinfsyn or mixsyn uses to optimize closed-loop performance, specified
as the comma-separated pair consisting of 'Method' and one of the following:

• 'RIC' — Riccati-based algorithm. The Riccati method is fastest, but cannot handle singular
problems without first adding extra disturbances and errors. This process is called regularization,
and is performed automatically by hinfsyn and mixsyn unless you set the 'Regularize' option
to 'off'. With regularization, this method works well for most problems.

When 'Method' = 'RIC', the additional options listed under “Riccati Method Options” on page
1-0  are available.

• 'LMI' — LMI-based algorithm. This method requires no regularization, but is computationally
more intensive than the Riccati method.

When 'Method' = 'LMI', the additional options listed under “LMI Method Options” on page 1-
0  are available.

• 'MAXE' — Maximum-entropy algorithm.

When 'Method' = 'MAXE', the additional options listed under “Maximum-Entropy Method
Options” on page 1-0  are available.

For more information about how these algorithms work, see the Algorithms section of hinfsyn.
Example: opts = hinfsynOptions('Mathod','LMI') creates an option set that specifies the
LMI-based optimization algorithm.

RelTol — Relative accuracy on optimal H∞ performance
0.01 (default) | positive scalar
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Relative accuracy on the optimal H∞ performance, specified as the comma-separated pair consisting
of 'RelTol' and a positive scalar value. The algorithm stops testing γ values when the relative
difference between the last failing value and last passing value is less than RelTol.
Example: opts = hinfsynOptions('RelTol',0.05) creates an option set that sets the relative
accuracy to 0.05.

Riccati Method Options

AbsTol — Absolute accuracy on optimal H∞ performance
10-6 (default) | positive scalar

Absolute accuracy on the optimal H∞ performance, specified as the comma-separated pair consisting
of 'AbsTol' and a positive scalar value.
Example: opts = hinfsynOptions('AbsTol',1e-4) creates an option set that sets the absolute
accuracy to 0.0001.

AutoScale — Automatic plant scaling
'on' (default) | 'off'

Automatic plant scaling, specified as the comma-separated pair consisting of 'AutoScale' and one
of the following:

• 'on' — Automatically scales the plant states, controls, and measurements to improve numerical
accuracy. hinfsyn always returns the controller K in the original unscaled coordinates.

• 'off' — Does not change the plant scaling. Turning off scaling when you know your plant is well
scaled can speed up the computation.

Example: opts = hinfsynOptions('AutoScale','off') creates an option set that turns off
automatic scaling.

Regularize — Automatic regularization
'on' (default) | 'off'

Automatic regularization of the plant, specified as the comma-separated pair consisting of
'Regularize' and one of:

• 'on' — Automatically regularizes the plant to enforce requirements on P12 and P21 (see
hinfsyn). Regularization is a process of adding extra disturbances and errors to handle singular
problems.

• 'off' — Does not regularize the plant. Turning off regularization can speed up the computation
when you know your problem is far enough from singular.

Example: opts = hinfsynOptions('Regularize','off') creates an option set that turns off
regularization.

LimitGain — Limit on controller gains
'on' (default) | 'off'

Limit on controller gains, specified as the comma-separated pair consisting of 'LimitGain' and
either 'on' or 'off'. For continuous-time plants, regularization of plant feedthrough matrices D12 or
D21 (see hinfsyn) can result in controllers with large coefficients and fast dynamics. Use this option
to automatically seek a controller with the same performance but lower gains and better
conditioning.
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LMI Method Options

LimitRS — Limit on norm of LMI solutions
0 (default) | scalar in [0,1]

Limit on norm of LMI solutions, specified as the comma-separated pair consisting of 'LimitRS' and
a scalar factor in the range [0,1]. Increase this value to slow the controller dynamics by penalizing
large-norm LMI solutions. See [1].

TolRS — Reduced-order synthesis tolerance
0.001 (default) | positive scalar

Reduced-order synthesis tolerance, specified as the comma-separated pair consisting of 'TolRS' and
a positive scalar value. hinfsyn computes a reduced-order controller when 1 <= rho(R*S) <=
TolRs, where rho(A) is the spectral radius, max(abs(eig(A))).

Maximum-Entropy Method Options

S0 — Frequency at which to evaluate entropy
Inf (default) | real scalar

Frequency at which to evaluate entropy, specified as a real scalar value. For more information, see
the Algorithms section of hinfsyn.

Output Arguments
opts — Options for hinfsyn and mixsyn
hinfsyn options object

Options for the hinfsyn or mixsyn computation, returned as an hinfsyn options object. Use the
object as an input argument to hinfsyn or mixsyn. For example:

[K,CL,gamma,info] = hinfsyn(P,nmeas,ncont,opts);

References
[1] Gahinet, P., and P. Apkarian. "A linear matrix inequality approach to H∞-control." Int J. Robust and

Nonlinear Control, Vol. 4, No. 4, 1994, pp. 421–448.

See Also
hinfsyn | mixsyn

Introduced in R2018b
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icomplexify
Helper function for complexify

Syntax
DeltaR = icomplexify(DeltaCR)

Description
icomplexify works on structures to extract a real value from a pair of related fields.

DeltaR = icomplexify(DeltaCR) affects field pairs of DeltaCR named 'foo' and
'foo_cmpxfy' where 'foo' can be any field name. DeltaR is the same as DeltaCR except that the
fields 'foo_cmpxfy' are removed. complexify, by default, complexifies the real uncertainty with
ucomplex atoms, though optionally ultidyn atoms can be used. If a ucomplex uncertainty was used
to complexify the uncertain system, the real parts of 'foo_cmpxfy' are added to the real parts of
'foo'. If a ultidyn uncertainty was used to complexify the uncertain system, only the real parts of
'foo' are returned.

See Also
complexify | robstab

Introduced in R2007a
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iconnect
(Not recommended) Create empty iconnect (interconnection) objects

Note iconnect is not recommended. For model interconnections, use connect instead.

Syntax
H = iconnect

Description
Interconnection objects (class iconnect) are an alternative to sysic, and are used to build complex
interconnections of uncertain matrices and systems.

An iconnect object has 3 fields to be set by the user, Input, Output and Equation. Input and
Output are icsignal objects, while Equation.is a cell-array of equality constraints (using equate)
on icsignal objects. Once these are specified, then the System property is the input/output model,
implied by the constraints in Equation. relating the variables defined in Input and Output.

Examples
iconnect can be used to create the transfer matrix M as described in the following figure.

Create three scalar icsignal: r, e and y. Create an empty iconnect object, M. Define the output
of the interconnection to be [e; y], and the input to be r. Define two constraints among the
variables: e = r-y, and y = (2/s) e. Get the transfer function representation of the relationship
between the input (r) and the output [e; y].

r = icsignal(1); 
e = icsignal(1); 
y = icsignal(1); 
M = iconnect; 
M.Input = r; 
M.Output = [e;y]; 
M.Equation{1} = equate(e,r-y); 
M.Equation{2} = equate(y,tf(2,[1 0])*e); 
tf(M.System) 

The transfer functions from input to outputs are

        s 
 #1:  ----- 
      s + 2 

        2 
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 #2:  ----- 
      s + 2 

By not explicitly introducing e, this can be done more concisely with only one equality constraint.

r = icsignal(1); 
y = icsignal(1); 
N = iconnect; 
N.Input = r; 
N.Output = [r-y;y]; 
N.Equation{1} = equate(y,tf(2,[1 0])*(r-y)); 
tf(N.System) 

You have created the same transfer functions from input to outputs.

        s 
 #1:  ----- 
      s + 2 

        2 
 #2:  ----- 
      s + 2 

You can also specify uncertain, multivariable interconnections using iconnect. Consider two
uncertain motor/generator constraints among 4 variables [V;I;T;W], V-R*I-K*W=0, and T=K*I.
Find the uncertain 2x2 matrix B so that [V;T] = B*[W;I].
R = ureal('R',1,'Percentage',[-10 40]); 
K = ureal('K',2e-3,'Percentage',[-30 30]); 
V = icsignal(1); 
I = icsignal(1); 
T = icsignal(1); 
W = icsignal(1); 
M = iconnect; 
M.Input = [W;I]; 
M.Output = [V;T]; 
M.Equation{1} = equate(V-R*I-K*W,iczero(1)); 
M.Equation{2} = equate(T,K*I); 
B = M.System 
UMAT: 2 Rows, 2 Columns 
  K: real, nominal = 0.002, variability = [-30  30]%, 2 occurrences 
  R: real, nominal = 1, variability = [-10  40]%, 1 occurrence     
B.NominalValue 
ans = 
    0.0020    1.0000 
         0    0.0020 

A simple system interconnection, identical to the system illustrated in the sysic reference pages.
Consider a three-input, two-output state-space matrix T,

which has internal structure
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P = rss(3,2,2); 
K = rss(1,1,2); 
A = rss(1,1,1); 
W = rss(1,1,1); 
M = iconnect; 
noise = icsignal(1); 
deltemp = icsignal(1); 
setpoint = icsignal(1); 
yp = icsignal(2); 
rad2deg = 57.3 
rad2deg = 
   57.3000 
M.Equation{1} = equate(yp,P*[W*deltemp;A*K*[noise+yp(2);setpoint]]); 
M.Input = [noise;deltemp;setpoint]; 
M.Output = [rad2deg*yp(1);setpoint-yp(2)]; 
T = M.System; 
size(T) 
State-space model with 2 outputs, 3 inputs, and 6 states. 

Limitations
The syntax for iconnect objects and icsignals is very flexible. Without care, you can build
inefficient (i.e., nonminimal) representations where the state dimension of the interconnection is
greater than the sum of the state dimensions of the components. This is in contrast to sysic. In
sysic, the syntax used to specify inputs to systems (the input_to_ListedSubSystemName
variable) forces you to include each subsystem of the interconnection only once in the equations.
Hence, interconnections formed with sysic are componentwise minimal. That is, the state dimension
of the interconnection equals the sum of the state dimensions of the components.

Algorithms
Each equation represents an equality constraint among the variables. You choose the input and
output variables, and the imp2exp function makes the implicit relationship between them explicit.

See Also
connect | icsignal | sysic

Introduced before R2006a
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icsignal
(Not recommended) Create icsignal object of specified dimension

Note icsignal is not recommended. For model interconnections, use connect instead.

Syntax
v = icsignal(n);

v = icsignal(n,name)

Description
icsignal creates an icsignal object, which is a symbolic column vector. The icsignal object is
used with iconnect objects to specify signal constraints described by the interconnection of
components.

v = icsignal(n) creates an icsignal object of vector length n. The value of n must be a
nonnegative integer. icsignal objects are symbolic column vectors, used in conjunction with
iconnect (interconnection) objects to specify the signal constraints described by an interconnection
of components.

v = icsignal(n,name) creates an icsignal object of dimension n, with internal name identifier
given by the character vector name.

See Also
connect | iconnect | sysic

Introduced before R2006a
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imp2ss
System realization via Hankel singular value decomposition

Syntax
[a,b,c,d,totbnd,hsv] = imp2ss(y)

[a,b,c,d,totbnd,hsv] = imp2ss(y,ts,nu,ny,tol)

[ss,totbnd,hsv] = imp2ss(imp)

[ss,totbnd,hsv] = imp2ss(imp,tol)

Description
The function imp2ss produces an approximate state-space realization of a given impulse response

 imp = mksys(y,t,nu,ny,'imp');

using the Hankel SVD method proposed by S. Kung [2]. A continuous-time realization is computed via
the inverse Tustin transform (using bilin) if t is positive; otherwise a discrete-time realization is
returned. In the SISO case the variable y is the impulse response vector; in the MIMO case y is an N
+1-column matrix containing N + 1 time samples of the matrix-valued impulse response H0, ..., HN of
an nu-input, ny-output system stored row-wise:

y = [H0(:)′;H2(:)′; H3(:)′; ... ;HN(:)′

The variable tol bounds the H∞ norm of the error between the approximate realization (a, b, c, d) and
an exact realization of y; the order, say n, of the realization (a, b, c, d) is determined by the infinity
norm error bound specified by the input variable tol. The inputs ts, nu, ny, and tol are optional. If
omitted, they default to the values ts = 0, nu = 1, ny = (number of rows of y)/nu, tol = 0.01σ1.
The output hsv = [σ1, σ2, ...]′returns the singular values (arranged in descending order of magnitude)
of the Hankel matrix:

Γ =

H1 H2 H3 … HN
H2 H3 H4 … 0
H3 H4 H5 … 0
⋮ ⋮ ⋮ ⋱ ⋮

HN 0 … … 0s

Denoting by GN a high-order exact realization of y, the low-order approximate model G enjoys the H∞
norm bound

G− GN ∞ ≤ totbnd

where

totbnd = 2 ∑
i = n + 1

N
σi .
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Algorithms
The realization (a, b, c, d) is computed using the Hankel SVD procedure proposed by Kung [2] as a
method for approximately implementing the classical Hankel factorization realization algorithm.
Kung's SVD realization procedure was subsequently shown to be equivalent to doing balanced
truncation (balmr) on an exact state-space realization of the finite impulse response {y(1),....y(N)}
[3]. The infinity norm error bound for discrete balanced truncation was later derived by Al-Saggaf
and Franklin [1]. The algorithm is as follows:

1 Form the Hankel matrix Γ from the data y.
2 Perform SVD on the Hankel matrix

Γ = U∑V * = U1U2
∑1 0

0 ∑2

V *1
V *2

= U1∑1V *1

where Σ1 has dimension n × n and the entries of Σ2 are nearly zero. U1 and V1 have ny and nu
columns, respectively.

3 Partition the matrices U1 and V1 into three matrix blocks:

U1 =
U11
U12
U13

V11
V12
V13

where U11, U13 ∈ Cny  ×  n and V11, V13 ∈ Cnu  ×  n.
4 A discrete state-space realization is computed as

A = ∑1
− 12 U∑1

− 12

B = ∑1
− 12 V *11

C = U11∑1
− 12

D = H0

where

U =
U11
U12

′ 
U12
U13

5 If the sample time t is greater than zero, then the realization is converted to continuous time via
the inverse of the Tustin transform

s = 2
t

z − 1
z + 1  .

Otherwise, this step is omitted and the discrete-time realization calculated in Step 4 is returned.
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References

[1] Al-Saggaf, U.M., and G.F. Franklin, “An Error Bound for a Discrete Reduced Order Model of a
Linear Multivariable System,” IEEE Trans. on Autom. Contr., AC-32, 1987, p. 815-819.

[2] Kung, S.Y., “A New Identification and Model Reduction Algorithm via Singular Value
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Introduced before R2006a
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isuncertain
Check whether argument is uncertain class type

Syntax
B = isuncertain(A)

Description
Returns true if input argument is uncertain, false otherwise. Uncertain classes are umat, ufrd,
uss, ureal, ultidyn, umargin, ucomplex, ucomplexm, and udyn.

Examples
In this example, you verify the correct operation of isuncertain on double, ureal, ss, and uss
objects.

isuncertain(rand(3,4)) 
ans = 
     0 
isuncertain(ureal('p',4)) 
ans = 
     1 
isuncertain(rss(4,3,2)) 
ans = 
     0 
isuncertain(rss(4,3,2)*[ureal('p1',4) 6;0 1]) 
ans = 
     1 

Limitations
isuncertain only checks the class of the input argument, and does not actually verify that the input
argument is truly uncertain. Create a umat by lifting a constant (i.e., not-uncertain) matrix to the
umat class.

A = umat([2 3;4 5;6 7]); 

Note that although A is in class umat, it is not actually uncertain. Nevertheless, based on class, the
result of isuncertain(A) is true.

isuncertain(A) 
ans = 
     1 

The result of simplify(A) is a double, and hence not uncertain.

isuncertain(simplify(A)) 
ans = 
     0 
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lftdata
Decompose uncertain objects into fixed certain and normalized uncertain parts

Syntax
[M,Delta] = lftdata(A);

[M,Delta] = lftdata(A,List);

[M,Delta,Blkstruct] = lftdata(A);

[M,Delta,Blkstruct,Normunc] = lftdata(A);

Description
lftdata decomposes an uncertain object into a fixed certain part and a normalized uncertain part.
lftdata can also partially decompose an uncertain object into an uncertain part and a normalized
uncertain part. Uncertain objects (umat, ufrd, uss) are represented as certain (i.e., not-uncertain)
objects in feedback with block-diagonal concatenations of uncertain elements.

[M,Delta] = lftdata(A) separates the uncertain object A into a certain object M and a
normalized uncertain matrix Delta such that A is equal to lft(Delta,M), as shown below.

If A is a umat, then M will be double; if A is a uss, then M will be ss; if A is a ufrd, then M will be
frd. In all cases, Delta is a umat.

[M,Delta] = lftdata(A,List) separates the uncertain object A into an uncertain object M, in
feedback with a normalized uncertain matrix Delta. List is a cell (or char) array of names of
uncertain elements of A that make up Delta. All other uncertainty in A remains in M.

lftdata(A,fieldnames(A.Uncertainty)) is the same as lftdata(A).

[M,DELTA,BLKSTRUCT] = lftdata(A) returns an N-by-1 structure array BLKSTRUCT, where
BLKSTRUCT(i) describes the i-th normalized uncertain element. This uncertainty description can be
passed directly to the low-level structured singular value analysis function mussv.

[M,DELTA,BLKSTRUCT,NORMUNC] = lftdata(A) returns the cell array NORMUNC of normalized
uncertain elements. Each normalized element has 'Normalized' appended to its original name to
avoid confusion. Note that lft(blkdiag(NORMUNC{:}),M) is equivalent to A. The normalizations
for each type of uncertain element are described in “Decomposing Uncertain Objects”.

Examples
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Decompose Uncertain Matrix

Create an uncertain matrix A with uncertain parameters p1, and p2. Decompose A into its certain
part, M, and normalized uncertain part, Delta.

p1 = ureal('p1',-3,'perc',40); 
p2 = ucomplex('p2',2); 
A = [p1 p1+p2;1 p2]; 
[M,Delta] = lftdata(A); 

You can inspect the difference between the original uncertain matrix, A, and the result formed by
combining the two results from the decomposition.

simplify(A-lft(Delta,M)) 

ans = 2×2

     0     0
     0     0

M

M = 4×4

         0         0    1.0954    1.0954
         0         0         0    1.0000
    1.0954    1.0000   -3.0000   -1.0000
         0    1.0000    1.0000    2.0000

You can check the worst-case norm of the uncertain part using wcnorm. Compare samples of the
uncertain part A with the uncertain matrix A.

wcn = wcnorm(Delta) 

wcn = struct with fields:
    LowerBound: 0
    UpperBound: 1.0012

usample(Delta,3) 

ans = 
ans(:,:,1) =

   0.6294 + 0.0000i   0.0000 + 0.0000i
   0.0000 + 0.0000i   0.8776 - 0.4413i

ans(:,:,2) =

   0.8116 + 0.0000i   0.0000 + 0.0000i
   0.0000 + 0.0000i   0.2704 + 0.2907i

ans(:,:,3) =

  -0.7460 + 0.0000i   0.0000 + 0.0000i
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   0.0000 + 0.0000i  -0.3382 + 0.9253i

Decompose Uncertain System

Create an uncertain matrix A with 2 uncertain real parameters v1 and v2. The create an uncertain
system G using A as the dynamic matrix, and numeric matrices for the input and output.

A = [ureal('p1',-3,'perc',40) 1;1 ureal('p2',-2)]; 
sys = ss(A,[1;0],[0 1],0);
sys.InputGroup.ActualIn = 1; 
sys.OutputGroup.ActualOut = 1; 

You can decompose G into a certain system, Msys, and a normalized uncertain matrix, Delta. You can
see from Msys that it is certain, and that the input and output groups have been adjusted.

[Msys,Delta] = lftdata(sys); 
Msys 

Msys =
 
  A = 
       x1  x2
   x1  -3   1
   x2   1  -2
 
  B = 
          u1     u2     u3
   x1  1.095      0      1
   x2      0      1      0
 
  C = 
          x1     x2
   y1  1.095      0
   y2      0      1
   y3      0      1
 
  D = 
       u1  u2  u3
   y1   0   0   0
   y2   0   0   0
   y3   0   0   0
 
Input groups:           
      Name      Channels
    ActualIn       3    
                        
Output groups:           
      Name       Channels
    ActualOut       3    
                         
Continuous-time state-space model.

You can compute the norm on samples of the difference between the original uncertain matrix and
the result formed by combining Msys and Delta.
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norm(usample(sys-lft(Delta,Msys),'p1',4,'p2',3),'inf') 

ans = 4×3

     0     0     0
     0     0     0
     0     0     0
     0     0     0

Partial Decomposition

Create an uncertain matrix A and derive an uncertain matrix B using an implicit-to-explicit
conversion, imp2exp. Note that B has 2 uncertain parameters R and K. You can decompose B into
certain part, M, and normalized uncertain part, Delta.

R = ureal('R',1,'Percentage',[-10 40]); 
K = ureal('K',2e-3,'Percentage',[-30 30]); 
A = [1 -R 0 -K;0 -K 1 0]; 
Yidx = [1 3]; 
Uidx = [4 2]; 
B = imp2exp(A,Yidx,Uidx); 
[M,Delta] = lftdata(B); 

The same operation can be performed by defining the uncertain parameters, K and R, to be extracted.

[MK,DeltaR] = lftdata(B,'R'); 
MK 

MK =

  Uncertain matrix with 3 rows and 3 columns.
  The uncertainty consists of the following blocks:
    K: Uncertain real, nominal = 0.002, variability = [-30,30]%, 2 occurrences

Type "MK.NominalValue" to see the nominal value, "get(MK)" to see all properties, and "MK.Uncertainty" to interact with the uncertain elements.

[MR,DeltaK] = lftdata(B,'K'); 
MR 

MR =

  Uncertain matrix with 4 rows and 4 columns.
  The uncertainty consists of the following blocks:
    R: Uncertain real, nominal = 1, variability = [-10,40]%, 1 occurrences

Type "MR.NominalValue" to see the nominal value, "get(MR)" to see all properties, and "MR.Uncertainty" to interact with the uncertain elements.

simplify(B-lft(Delta,M)) 

ans = 2×2

     0     0
     0     0

simplify(B-lft(DeltaR,MK)) 
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ans = 2×2

     0     0
     0     0

simplify(B-lft(DeltaK,MR)) 

ans = 2×2

     0     0
     0     0

Examine the result formed by combining the two results from the decomposition.

[Mall,Deltaall] = lftdata(B,{'K';'R'}); 
Mall-M

ans = 5×5

     0     0     0     0     0
     0     0     0     0     0
     0     0     0     0     0
     0     0     0     0     0
     0     0     0     0     0

See Also
lft | ssdata

Topics
“Decomposing Uncertain Objects”

Introduced before R2006a
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lmiedit
Specify or display systems of LMIs as MATLAB expressions

Syntax
lmiedit

Description
lmiedit is a graphical user interface for the symbolic specification of LMI problems. Typing
lmiedit calls up a window with two editable text areas and various buttons. To specify an LMI
system,

1 Give it a name (top of the window).
2 Declare each matrix variable (name and structure) in the upper half of the window. The structure

is characterized by its type (S for symmetric block diagonal, R for unstructured, and G for other
structures) and by an additional structure matrix similar to the second input argument of
lmivar. Please use one line per matrix variable in the text editing areas.

3 Specify the LMIs as MATLAB expressions in the lower half of the window. An LMI can stretch
over several lines. However, do not specify more than one LMI per line.

Once the LMI system is fully specified, you can perform the following operations by pressing the
corresponding button:

• Visualize the sequence of lmivar/lmiterm commands needed to describe this LMI system (view
commands buttons)

• Conversely, display the symbolic expression of the LMI system produced by a particular sequence
of lmivar/lmiterm commands (click the describe... buttons)

• Save the symbolic description of the LMI system (save button). This description can be reloaded
later on by pressing the load button

• Read a sequence of lmivar/lmiterm commands from a file (read button). The matrix expression
of the LMI system specified by these commands is then displayed by clicking on describe the
LMIs...

• Write in a file the sequence of lmivar/lmiterm commands needed to specify a particular LMI
system (write button)

• Generate the internal representation of the LMI system by pressing create. The result is written
in a MATLAB variable with the same name as the LMI system

Tips
Editable text areas have built-in scrolling capabilities. To activate the scroll mode, click in the text
area, maintain the mouse button down, and move the mouse up or down. The scroll mode is only
active when all visible lines have been used.

See Also
lmivar | lmiterm | newlmi | lmiinfo
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lmiinfo
Information about variables and term content of LMIs

Syntax
lmiinfo

Description
lmiinfo provides qualitative information about the system of LMIs lmisys. This includes the type
and structure of the matrix variables, the number of diagonal blocks in the inner factors, and the
term content of each block.

lmiinfo is an interactive facility where the user seeks specific pieces of information. General LMIs
are displayed as

N' * L(x) * N < M' * R(x) * M

where N,M denote the outer factors and L,R the left and right inner factors. If the outer factors are
missing, the LMI is simply written as

L(x) < R(x)

If its right side is zero, it is displayed as

N' * L(x) * N < 0

Information on the block structure and term content of L(x) and R(x) is also available. The term
content of a block is symbolically displayed as

C1 + A1*X2*B1 + B1'*X2*A1' + a2*X1 + x3*Q1

with the following conventions:

• X1, X2, x3 denote the problem variables. Upper-case X indicates matrix variables while lower-
case x indicates scalar variables. The labels 1,2,3 refer to the first, second, and third matrix
variable in the order of declaration.

• Cj refers to constant terms. Special cases are I and –I (I = identity matrix).
• Aj, Bj denote the left and right coefficients of variable terms. Lower-case letters such as a2

indicate a scalar coefficient.
• Qj is used exclusively with scalar variables as in x3*Q1.

The index j in Aj, Bj, Cj, Qj is a dummy label. Hence C1 may appear in several blocks or several
LMIs without implying any connection between the corresponding constant terms. Exceptions to this
rule are the notations A1*X2*A1' and A1*X2*B1 + B1'*X2'*A1' which indicate symmetric terms
and symmetric pairs in diagonal blocks.

Examples
Consider the LMI
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0
−2X + ATYB + BTYTA + I XC

CTX −zI

where the matrix variables are X of Type 1, Y of Type 2, and z scalar. If this LMI is described in lmis,
information about X and the LMI block structure can be obtained as follows:

lmiinfo(lmis)
 
                  LMI ORACLE 
                -------

This is a system of 1 LMI with 3 variable matrices

Do you want information on 
    (v) matrix variables     (l) LMIs     (q) quit

?> v

Which variable matrix (enter its index k between 1 and 3) ? 1
    X1 is a 2x2 symmetric block diagonal matrix 
      its (1,1)-block is a full block of size 2

                      -------

This is a system of 1 LMI with 3 variable matrices
Do you want information on 
    (v) matrix variables     (l) LMIs     (q) quit

?> l

Which LMI (enter its number k between 1 and 1) ? 1

    This LMI is of the form
            0 < R(x)
where the inner factor(s) has 2 diagonal block(s)

Do you want info on the right inner factor ?

    (w) whole factor     (b) only one block 
    (o) other LMI        (t) back to top level

?> w

Info about the right inner factor

    block (1,1) : I + a1*X1 + A2*X2*B2 + B2'*X2'*A2'

    block (2,1) : A3*X1

    block (2,2) : x3*A4

    (w) whole factor     (b) only one block 
    (o) other LMI        (t) back to top level

                    -------
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This is a system of 1 LMI with 3 variable matrices

Do you want information on 
    (v) matrix variables     (l) LMIs     (q) quit

?> q

It has been a pleasure serving you!

Note that the prompt symbol is ?> and that answers are either indices or letters. All blocks can be
displayed at once with option (w), or you can prompt for specific blocks with option (b).

Tips
lmiinfo does not provide access to the numerical value of LMI coefficients.

See Also
decinfo | lminbr | matnbr | decnbr

Introduced before R2006a
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lminbr
Return number of LMIs in LMI system

Syntax
k = lminbr(lmisys)

Description
lminbr returns the number k of linear matrix inequalities in the LMI problem described in lmisys.

See Also
lmiinfo | matnbr

Introduced before R2006a
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lmireg
Specify LMI regions for pole placement

Syntax
region = lmireg

region = lmireg(reg1,reg2,...)

Description
lmireg is an interactive facility to specify the LMI regions involved in multi-objective H∞ synthesis
with pole placement constraints (see msfsyn and h2hinfsyn). An LMI region is any convex subset D
of the complex plane that can be characterized by an LMI in z and z¯, i.e.,

D = z ∈ C:L + Mz + MTz < 0

for some fixed real matrices M and L = LT. This class of regions encompasses half planes, strips,
conic sectors, disks, ellipses, and any intersection of the above.

Calling lmireg without argument starts an interactive query/answer session where you can specify
the region of your choice. The matrix region = [L, M] is returned upon termination. This matrix
description of the LMI region can be passed directly to msfsyn for synthesis purposes.

The function lmireg can also be used to intersect previously defined LMI regions reg1,
reg2,.... The output region is then the [L, M] description of the intersection of these regions.

Examples

Define LMI Region for Pole Placement

For LMI controller synthesis with functions like msfsyn and h2hinfsyn, you can restrict the
eigenvalues of the closed-loop system to an LMI region. The region is specified as a matrix of the
form [L M]. In this example, use lmireg interactively to generate a matrix you can use to restrict
the poles of the closed-loop system to Re(z) < –1.

Start the interactive process.

region = lmireg

Select a region among the following:

h)   Half-plane
d)   Disk 
c)   Conic sector 
e)   Ellipsoid 
p)   Parabola 
s)   Horizontal strip 
m)   Matrix description of the LMI region
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q)   Quit
choice: 

The software prompts you to select the geometry of the region. For this example, enter h to specify a
half-plane region. The software now prompts you to specify left half-plane (Re(z) less than some
value) or right half-plane (Re(z) greater than some value).

Orientation (x < x0 -> l , x > x0 -> r):  

Enter l to specify a left half-plane. The software prompts you to specify a value for x0.

Specify x0:  

Enter -1. You have now completely specified the restriction Re(z) < –1. If you want to specify
additional regional constraints on the pole locations, you can select another geometry now and follow
the prompts. For this example, enter q to generate the LMI region matrix corresponding to Re(z) < –
1.

region =

   2.0000 + 1.0000i   1.0000 + 0.0000i

You can now use region with msfsyn or h2hinfsyn.

See Also
msfsyn | h2hinfsyn

Introduced before R2006a
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lmiterm
Specify term content of LMIs

Syntax
lmiterm(termID,A,B,flag)

Description
lmiterm specifies the term content of an LMI one term at a time. Recall that LMI term refers to the
elementary additive terms involved in the block-matrix expression of the LMI. Before using lmiterm,
the LMI description must be initialized with setlmis and the matrix variables must be declared with
lmivar. Each lmiterm command adds one extra term to the LMI system currently described.

LMI terms are one of the following entities:

• outer factors
• constant terms (fixed matrices)
• variable terms AXB or AXTB where X is a matrix variable and A and B are given matrices called

the term coefficients.

When describing an LMI with several blocks, remember to specify only the terms in the blocks on
or below the diagonal (or equivalently, only the terms in blocks on or above the diagonal). For
instance, specify the blocks (1,1), (2,1), and (2,2) in a two-block LMI.

In the calling of lmiterm, termID is a four-entry vector of integers specifying the term location and
the matrix variable involved.

termID (1) =
+p
−p

where positive p is for terms on the left-side of the p-th LMI and negative p is for terms on the right-
side of the p-th LMI.

Recall that, by convention, the left side always refers to the smaller side of the LMI. The index p is
relative to the order of declaration and corresponds to the identifier returned by newlmi.

termID(2:3) =
0,0  for outer factors

[i, j] for terms in the (i, j)‐th block of the left or right inner factor

termID(4) =
0 for outer factors
x for variable terms AXB

−x for variable terms AXTB

where x is the identifier of the matrix variable X as returned by lmivar.

The arguments A and B contain the numerical data and are set according to:
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Type of Term A B
outer factor N matrix value of N omit
constant term C matrix value of C omit
variable term

AXB or AXTB

matrix value of A

(1 if A is absent)

matrix value of B

(1 if B is absent)

Note that identity outer factors and zero constant terms need not be specified.

The extra argument flag is optional and concerns only conjugated expressions of the form

(AXB) + (AXB)T = AXB + BTXTAT

in diagonal blocks. Setting flag = 's' allows you to specify such expressions with a single
lmiterm command. For instance,

lmiterm([1 1 1 X],A,1,'s')

adds the symmetrized expression AX + XTAT to the (1,1) block of the first LMI and summarizes the
two commands

lmiterm([1 1 1 X],A,1) 
lmiterm([1 1 1 -X],1,A')

Aside from being convenient, this shortcut also results in a more efficient representation of the LMI.

Examples
Specify LMI Terms

Consider the LMI

2AX2AT − x3E + DDT BTX1

X1
TB −I

< MT CX1CT + CX1
TCT 0

0 − f X2
M

where X1, X2 are matrix variables of Types 2 and 1, respectively, and x3 is a scalar variable (Type 1).

After you initialize the LMI description using setlmis and declare the matrix variables using
lmivar, specify the terms on the left side of this LMI.

lmiterm([1 1 1 X2],2*A,A')  % 2*A*X2*A'
lmiterm([1 1 1 x3],-1,E)    % -x3*E 
lmiterm([1 1 1 0],D*D')     % D*D' 
lmiterm([1 2 1 -X1],1,B)    % X1'*B 
lmiterm([1 2 2 0],-1)       % -I

Here X1, X2, and x3 are the variable identifiers returned by lmivar when you declare the variables.

Similarly, specify the term content of the right side.

lmiterm([-1 0 0 0],M)         % outer factor M 
lmiterm([-1 1 1 X1],C,C','s') % C*X1*C'+C*X1'*C' 
lmiterm([-1 2 2 X2],-f,1)     % -f*X2
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Note that CX1CT + CX1
TCT is specified by a single lmiterm command with the flag 's' to ensure

proper symmetrization.

See Also
setlmis | lmivar | getlmis | lmiedit | newlmi

Introduced before R2006a
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lmivar
Specify matrix variables in LMI problem

Syntax
X = lmivar(type,struct)

[X,n,sX] = lmivar(type,struct)

Description
lmivar defines a new matrix variable X in the LMI system currently described. The optional output X
is an identifier that can be used for subsequent reference to this new variable.

The first argument type selects among available types of variables and the second argument struct
gives further information on the structure of X depending on its type. Available variable types
include:

type=1: Symmetric matrices with a block-diagonal structure. Each diagonal block is either full
(arbitrary symmetric matrix), scalar (a multiple of the identity matrix), or identically zero.

If X has R diagonal blocks, struct is an R-by-2 matrix where

• struct(r,1) is the size of the r-th block
• struct(r,2) is the type of the r-th block (1 for full, 0 for scalar, –1 for zero block).

type=2: Full m-by-n rectangular matrix. Set struct = [m,n] in this case.

type=3: Other structures. With Type 3, each entry of X is specified as zero or ±x where xn is the n-th
decision variable.

Accordingly, struct is a matrix of the same dimensions as X such that

• struct(i,j)=0 if X(i, j) is a hard zero
• struct(i,j)=n if X(i, j) = xn

• struct(i,j)=–n if X(i, j) = –xn

Sophisticated matrix variable structures can be defined with Type 3. To specify a variable X of Type 3,
first identify how many free independent entries are involved in X. These constitute the set of
decision variables associated with X. If the problem already involves n decision variables, label the
new free variables as xn+1, . . ., xn+p. The structure of X is then defined in terms of xn+1, . . ., xn+p as
indicated above. To help specify matrix variables of Type 3, lmivar optionally returns two extra
outputs: (1) the total number n of scalar decision variables used so far and (2) a matrix sX showing
the entry-wise dependence of X on the decision variables x1, . . ., xn.

Examples
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Type 1 and Type 2 Matrix Variables

Consider an LMI system with three matrix variables X1, X2, and X3 such that

• X1 is a 3-by-3 symmetric matrix (unstructured),
• X2 is a 2-by-4 rectangular matrix (unstructured),
• X3 =

Δ 0 0
0 δ1 0
0 0 δ2I2

,

where Δ is an arbitrary 5-by-5 symmetric matrix, δ1 and δ2 are scalars, and I2 denotes the identity
matrix of size 2.

Define these three variables using lmivar.

setlmis([]) 
X1 = lmivar(1,[3 1]);          % Type 1 
X2 = lmivar(2,[2 4]);         % Type 2 of dimension 2-by-4 
X3 = lmivar(1,[5 1;1 0;2 0]);  % Type 1

The last command defines X3 as a variable of Type 1 with one full block of size 5 and two scalar
blocks of sizes 1 and 2, respectively.

Type 3 Matrix Variables

Combined with the extra outputs n and sX of lmivar, Type 3 allows you to specify fairly complex
matrix variable structures. For instance, consider a matrix variable X with structure given by:

X =
X1 0
0 X2

where X1 and X2 are 2-by-3 and 3-by-2 rectangular matrices, respectively. Specify this structure as
follows.

Define the rectangular variables X1 and X2.

setlmis([]) 
[X1,n,sX1] = lmivar(2,[2 3]); 
[X2,n,sX2] = lmivar(2,[3 2]);

The outputs sX1 and sX2 give the decision variable content of X1 and X2.

sX1

sX1 = 2×3

     1     2     3
     4     5     6
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sX2

sX2 = 3×2

     7     8
     9    10
    11    12

For instance, sX2(1,1) = 7 means that the (1,1) entry of X2 is the seventh decision variable.

Next, use Type 3 to specify the matrix variable X, and define its structure in terms of the structures of
X1 and X2.

[X,n,sX] = lmivar(3,[sX1,zeros(2);zeros(3),sX2]);

Confirm that the resulting X has the desired structure.

sX

sX = 5×5

     1     2     3     0     0
     4     5     6     0     0
     0     0     0     7     8
     0     0     0     9    10
     0     0     0    11    12

See Also
setlmis | lmiterm | getlmis | lmiedit | skewdec | delmvar | setmvar

Introduced before R2006a

1 Functions

1-272



lncf
Left normalized coprime factorization

Syntax
fact = lncf(sys)
[fact,Ml,Nl] = lncf(sys)

Description
fact = lncf(sys) computes the left normalized coprime factorization of the dynamic system
model sys. The factorization is given by:

sys = Ml
−1Nl, MlMl* + NlNl* = I .

Here, Ml* denotes the conjugate of Ml (see ctranspose). . The returned model fact is a minimal
state-space realization of the stable system [Ml,Nl]. This factorization is used in other normalized
coprime factor computations such as model reduction (ncfmr) and controller synthesis (ncfsyn).

[fact,Ml,Nl] = lncf(sys) also returns the coprime factors Ml and Nl.

Examples

Left Normalized Coprime Factorization of SISO System

Compute the left normalized coprime factorization of a SISO system.

sys = zpk([1 -1+2i -1-2i],[-1 2+1i 2-1i],1);
[fact,Ml,Nl] = lncf(sys);

Examine the original system and its factors.

sys

sys =
 
  (s-1) (s^2 + 2s + 5)
  --------------------
  (s+1) (s^2 - 4s + 5)
 
Continuous-time zero/pole/gain model.

zpk(Ml)

ans =
 
  0.70711 (s+1) (s^2 - 4s + 5)
  ----------------------------
    (s+1) (s^2 + 3.162s + 5)
 
Continuous-time zero/pole/gain model.
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zpk(Nl)

ans =
 
  0.70711 (s-1) (s^2 + 2s + 5)
  ----------------------------
    (s+1) (s^2 + 3.162s + 5)
 
Continuous-time zero/pole/gain model.

The numerators of the factors Ml and Nl are the denominator and numerator of sys, respectively.
Thus, sys = Ml\Nl. lncf chooses the denominators of the factors such that the system
Ml jω , Nl jω  is a unit vector at all frequencies. To confirm that property of the factorization,

examine the singular values of fact, which is a stable minimal realization of Ml jω , Nl jω .

sigma(fact)

Within a small numerical error, the singular value of fact is 1 (0 dB) at all frequencies.

Left Normalized Coprime Factorization of MIMO System

Compute the left normalized coprime factorization of a state-space model that has two outputs, two
inputs, and three states.
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rng(0); % for reproducibility
sys = rss(3,2,2);
[fact,Ml,Nl] = lncf(sys);

fact is a stable minimal realization of the factorization given by [Ml,Nl].

isstable(fact)

ans = logical
   1

Another property of fact is that its frequency response F(jω) is an orthogonal matrix at all
frequencies (F(jω)’F(jω) = I). Confirm this property by examining the singular values of fact. Within
a small numerical error, the singular values are 1 (0 dB) at all frequencies.

sigma(fact)

Confirm that the factors satisfy sys = Ml\Nl by examining the singular values of both.

sigma(sys,'b-',Ml\Nl,'r--')
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Input Arguments
sys — Input system
dynamic system model

Input system to factorize, specified as a dynamic system model such as a state-space (ss) model. If
sys is a generalized state-space model with uncertain or tunable control design blocks, then the
function uses the nominal or current value of those elements. sys cannot be an frd model or a model
with time delays.

Output Arguments
fact — Minimal realization of [Ml,Nl]
ss model

Minimal realization of [Ml,Nl], returned as a state-space model. fact is stable and its frequency
response is an orthogonal matrix at all frequencies. If sys has p outputs and m inputs, then fact has
p outputs and m+p inputs. fact has the same number of states as sys.

Ml,Nl — Left coprime factors
ss models

Left coprime factors of sys, returned as state-space models. If sys has p outputs and m inputs, then:
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• Ml has p outputs and p inputs.
• Nl has p outputs and m inputs.

Both factors have the same number of states as sys and the same A and C matrices as fact.

Tips
• fact is a minimal realization of [Ml,Nl]. If you need to use [Ml,Nl] or [Ml,Nl]' in a

computation, it is better to use fact than to concatenate the factors yourself. Such manual
concatenation results in extra (nonminimal) states, which can lead to decreased numerical
accuracy.

See Also
rncf | ncfmr | ncfsyn

Introduced in R2019a
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loopmargin
(Not recommended) Stability margin analysis of LTI and Simulink feedback loops

Note loopmargin is not recommended. Use diskmargin or allmargin instead. For more
information, see “Compatibility Considerations”.

Syntax
[cm,dm,mm] = loopmargin(L)
[m1,...,mn] = loopmargin(L,MFLAG)
[cmi,dmi,mmi,cmo,dmo,mmo,mmio] = loopmargin(P,C)
[m1,...,mn] = loopmargin(P,C,MFLAG)
[cm,dm,mm] = loopmargin(Model,Blocks,Ports)
[cm,dm,mm,info] = loopmargin(Model,Blocks,Ports,OP)
[m1,...,mn,info] = loopmargin(Model,Blocks,Ports,MFLAG)
[m1,...,mn,info] = loopmargin(Model,Blocks,Ports,OP,MFLAG)

Description
[cm,dm,mm] = loopmargin(L) analyzes the multivariable feedback loop consisting of the loop
transfer matrix L (size N-by-N) in negative feedback with an N-by-N identity matrix.

cm, or classical gain and phase margins, is an N-by-1 structure corresponding to loop-at-a-time gain
and phase margins for each channel. L is an LTI model. Use -L to specify positive feedback.

dm is an N-by-1 structure corresponding to loop-at-a-time disk gain and phase margins for each
channel. The disk margin for the i-th feedback channel defines a circular region centered on the
negative real axis at the average GainMargin (GM), e.g. , (GMlow+GMhigh)/2, such that L(i,i) does not
enter that region. Gain and phase disk margin bounds are derived from the radius of the circle,
calculated based on the balanced sensitivity function.

mm, the multiloop disk margin, is a structure. mm describes how much independent and concurrent
gain and phase variation can occur independently in each feedback channel while maintaining
stability of the closed-loop system. Note that mm is a single structure, independent of the number of
channels. This is because variations in all channels are considered simultaneously. As in the case for
disk margin, the guaranteed bounds are calculated based on a balanced sensitivity function.

[m1,...,mn] = loopmargin(L,MFLAG) returns a subset of the margins, specified by the
character vector MFLAG. This optional argument may be any combination, in any order, of the 3
characters 'c', 'd' and 'm'. For example, [m1,m2] = loopmargin(L,'m,c') returns the multi-
loop disk margin ('m') in m1, and the classical margins ('c') in m2. Use 'd' to specify the disk
margin.

[cmi,dmi,mmi,cmo,dmo,mmo,mmio] = loopmargin(P,C) analyzes the multivariable feedback
loop consisting of the controller C in negative feedback with the plant, P. C should only be the
compensator in the feedback path, without reference channels, if it is a 2-dof architecture. That is, if
the closed-loop system has a 2-dof architecture the reference channel of the controller should be
eliminated, resulting in a 1-dof architecture, as shown.
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cmi,dmi and mmi structures correspond to the classical loop-at-a-time gain and phase margins, disk
margins and multiloop channel margins at the plant input respectively. The structures cmo, dmo and
mmo have the same fields as described for cmi, dmi and mmi though they correspond to the plant
outputs. mmio, or multi-input/multi-output margins, is a structure corresponding to simultaneous,
independent, variations in all the individual input and output channels of the feedback loops. mmio
has the same fields as mmi and mmo.

[m1,...,mn] = loopmargin(P,C,MFLAG) returns a subset of the margins, specified by MFLAG.
This optional argument may be any combination, in any order, of the 7 character pairs 'ci', 'di',
'mi', 'co', 'do, 'mo', and 'mm'. For example,[m1,m2,m3] = loopmargin(P,C,'mo,ci,mm')
returns the multi-loop disk margin at the plant output ('mo') in m1, the classical margins at the plant
input ('ci') in m2, and the multi-loop disk margins for simultaneous, independent variations in all
input and output channels ('mm') in m3.

Usage with Simulink

[cm,dm,mm] = loopmargin(Model,Blocks,Ports) does a multi-loop stability margin analysis
using Simulink Control Design software. Model specifies the name of the Simulink diagram for
analysis. The margin analysis points are defined at the output ports (Ports) of blocks (Blocks)
within the model. Blocks is a cell array of full block path names and Ports is a vector of the same
dimension as Blocks. If all Blocks have a single output port, then Ports would be a vector of ones
with the same length as Blocks.

Three types of stability margins are computed: loop-at-a-time classical gain and phase margins (cm),
loop-at-a-time disk margins (dm) and a multi-loop disk margin (mm).

[cm,dm,mm] = loopmargin(Model,Blocks,Ports,OP) uses the operating point object OP to
create linearized systems from the Simulink Model.

[cm,dm,mm,info] = loopmargin(Model,Blocks,Ports,OP) returns info in addition to the
margins. info is a structure with fields OperatingPoint, LinearizationIO and SignalNames
corresponding to the analysis.

[m1,...,mn,info] = loopmargin(Model,Blocks,Ports,MFLAG) and [m1,...,mn,info] =
loopmargin(Model,Blocks,Ports,OP,MFLAG) return a subset of the margins, specified by the
character vector MFLAG. This optional argument may be any combination, in any order, of the 3
characters 'c', 'd' and 'm'. For example, [m1,m2] =
loopmargin(Model,Blocks,Ports,'m,c') returns the multi-loop disk margin ('m') in m1, and
the classical margins ('c') in m2. Use 'd' to specify the disk margin.

Basic Syntax

[cm,dm,mm] = loopmargin(L) cm is calculated using the allmargin command and has the same
fields as allmargin. The output cm is an N-by-1 structure of classical gain and phase margins for
each feedback channel with all other loops closed. cm has the following fields:
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Field Description
GMFrequency All –180 deg crossover frequencies (in radians-per-second)
GainMargin Corresponding gain margins (GM = 1/L where L is the gain at crossover)
PhaseMargin Corresponding phase margins (in degrees)
PMFrequency All 0 dB crossover frequencies (in radians-per-second)
DelayMargin Delay margins (in seconds for continuous-time systems, and multiples of the

sample time for discrete-time systems)
Stable 1 if nominal closed loop is stable, 0 otherwise. If L is a frd or ufrd object, the

Stable flag is set to NaN.

dm, or Disk Margin, is an N-by-1 structure of disk margins for each feedback channel with all other
loops closed. dm has the following fields:

Field Description
GainMargin Smallest gain variation (GM) such that a disk centered at the point –(GM(1) +

GM(2))/2 just touches the Nyquist plot of the loop transfer function.
PhaseMargin Smallest phase variation, in degrees, corresponding to the disk described in

the GainMargin field.
Frequency Frequency with the weakest disk margin, in rad/TimeUnit, where TimeUnit

is the TimeUnit property of L.

For frd models, loopmargin computes margins at all the frequency points in
the model, and returns the frequency with the weakest margin of these values.

mm is a structure with the following fields.

Field Description
GainMargin Guaranteed bound on simultaneous, independent, gain variations allowed in all

plant channels.
PhaseMargin Guaranteed bound on simultaneous, independent, phase variations allowed in

all plant channels (degrees).
Frequency Frequency with the weakest disk margin, in rad/TimeUnit, where TimeUnit

is the TimeUnit property of L.

For frd models, loopmargin computes margins at all the frequency points in
the model, and returns the frequency with the weakest margin of these values.

Relationship Between Disk Margin and Gain and Phase Margins

The disk margin is based on a multiplicative uncertainty model in which the loop gain L of each loop
channel becomes

L L1 + Δ/2
1− Δ/2 , Δ < α .

where Δ is complex. The uncertainty size α is the disk margin. The uncertain quantity (1 + Δ)/(1 – Δ)
has a gain component and a phase component. Thus, enforcing a disk margin α also enforces
minimum gain and phase margins given by
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GM = 1 + α
1− α ,

PM = 2arctan α ,

with GM in absolute units and PM in degrees. The gain and phase margins are therefore related by

GM = 1 + tan PM/2
1− tan PM/2 .

When you specify independent gain and phase margins for tuning, the software chooses the smallest
α that enforces both values, which is

α = 2 max GM − 1
GM + 1, tan PM/2 .

Note that GM and PM are not the same as the classical gain and phase margins. Rather, they provide
stronger guarantees of stability, because both of the following can occur at the same time without
loss of stability:

• The loop gain can increase or decrease by a factor of GM, and
• The loop phase can increase or decrease by PM degrees.

By contrast, the classical gain and phase margins consider only gain variations or phase variations at
a single frequency, the crossover frequency.

Examples

MIMO Loop-at-a-Time Margins

This example shows how to compute loop-at-a-time margins (gain, phase, and/or distance to –1), and
also illustrates that such margins can be inaccurate measures of multivariable robustness margins.
Margins of individual loops can be very sensitive to small perturbations within other loops.

Consider the nominal closed-loop system of the following illustration.

G and K are 2-by-2 (MIMO) systems, given by:

G = 1
s2 + α2

s2− α2 α s + 1
−α s + 1 s2− α2

, K =
1 −2
0 1

.

Set α = 10, construct G in state-space form, and compute the loop margins.

a = [0 10;-10 0]; 
b = eye(2); 
c = [1 8;-10 1]; 
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d = zeros(2,2); 
G = ss(a,b,c,d); 
K = [1 -2;0 1]; 
[cmi,dmi,mmi,cmo,dmo,mmo,mmio] = loopmargin(G,K);

First consider the margins at the input to the plant. The first input channel has infinite gain margin
and 90 degrees of phase margin based on the results from the loopmargin command, cmi(1).

cmi(1)

ans = struct with fields:
     GainMargin: [1x0 double]
    GMFrequency: [1x0 double]
    PhaseMargin: 90
    PMFrequency: 21
    DelayMargin: 0.0748
    DMFrequency: 21
         Stable: 1

The disk margin analysis, dmi, of the first channel provides similar results.

dmi(1)

ans = struct with fields:
     GainMargin: [0 Inf]
    PhaseMargin: [-90 90]
      Frequency: 0

The second input channel has a gain margin of 2.105 and infinite phase margin based on the single-
loop analysis, cmi(2).

cmi(2)

ans = struct with fields:
     GainMargin: 2.1053
    GMFrequency: 0
    PhaseMargin: [1x0 double]
    PMFrequency: [1x0 double]
    DelayMargin: [1x0 double]
    DMFrequency: [1x0 double]
         Stable: 1

The disk margin analysis, dmi(2), which allows for simultaneous gain and phase variations a loop-at-
a-time results in maximum gain margin variations of 0.475 and 2.105 and phase margin variations of
+/- 39.18 degs.

dmi(2)

ans = struct with fields:
     GainMargin: [0.4750 2.1053]
    PhaseMargin: [-39.1846 39.1846]
      Frequency: 0

The multiple margin analysis of the plant inputs corresponds to allowing simultaneous, independent
gain and phase margin variations in each channel. Allowing independent variation of the input
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channels further reduces the tolerance of the closed-loop system to variations at the input to the
plant. The multivariable margin analysis, mmi, leads to a maximum allowable gain margin variation of
0.728 and 1.373 and phase margin variations of +/- 17.87 deg. Hence even though the first channel
had infinite gain margin and 90 degrees of phase margin, allowing variation in both input channels
leads to a factor of two reduction in the gain and phase margin.

mmi

mmi = struct with fields:
     GainMargin: [0.7288 1.3721]
    PhaseMargin: [-17.8304 17.8304]
      Frequency: 0

The guaranteed region of phase and gain variations for the closed-loop system can be illustrated
graphically. The disk margin analysis, dmi(2), indicates the closed-loop system will remain stable for
simultaneous gain variations of 0.475 and 2.105 (± 6.465 dB) and phase margin variations of ± 39.18
deg in the second input channel. This is denoted by the region associated with the large ellipse in the
following figure. The multivariable margin analysis at the input to the plant, mmi, indicates that the
closed-loop system will be stable for independent, simultaneous, gain margin variation up to 0.728
and 1.373 (±2.753 dB) and phase margin variations up to ± 17.87 deg (the dark ellipse region) in
both input channels.

The output channels have single-loop margins of infinite gain and 90 deg phase variation. The output
multivariable margin analysis, mmo, leads to a maximum allowable gain margin variation of 0.607 and
1.649 and phase margin variations of +/- 27.53 degs. Hence even though both output channels had
infinite gain margin and 90 degrees of phase margin, simultaneous variations in both channels
significantly reduce the margins at the plant outputs.

mmo

mmo = struct with fields:
     GainMargin: [0.6070 1.6474]
    PhaseMargin: [-27.4826 27.4826]
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      Frequency: 0.2663

The margins when all the input and output channels are allowed to vary independently are in the
output mmio. For this system, this output shows that the allowable gain margin variations are 0.827
and 1.210 and allowable phase margin variations are +/- 10.84 deg.

mmio

mmio = struct with fields:
     GainMargin: [0.8270 1.2092]
    PhaseMargin: [-10.8190 10.8190]
      Frequency: 0

Algorithms
Two well-known loop robustness measures are based on the sensitivity function S=(I–L)–1 and the
complementary sensitivity function T=L(I–L)–1 where L is the loop gain matrix associated with the
input or output loops broken simultaneously. In the following figure, S is the transfer matrix from
summing junction input u to summing junction output e. T is the transfer matrix from u to y. If signals
e and y are summed, the transfer matrix from u to e+y is given by (I+L)· (I–L)–1, the balanced
sensitivity function. It can be shown (Dailey, 1991, Blight, Daily and Gangass, 1994) that each broken-
loop gain can be perturbed by the complex gain (1+Δ)(1–Δ) where |Δ|<1/µ(S+T) or |Δ|<1/σmax(S+T)
at each frequency without causing instability at that frequency. The peak value of µ(S+T) or σmax(S
+T) gives a robustness guarantee for all frequencies, and for µ(S+T) the guarantee is
nonconservative (Blight, Daily and Gangass, 1994).

This figure shows a comparison of a disk margin analysis with the classical notations of gain and
phase margins.

1 Functions

1-284



The Nyquist plot is of the loop transfer function L(s)

L(s) =
s

30 + 1
(s + 1)(s2 + 1.6s + 16)

• The Nyquist plot of L corresponds to the blue line.
• The unit disk corresponds to the dotted red line.
• GM and PM indicate the location of the classical gain and phase margins for the system L.
• DGM and DPM correspond to the disk gain and phase margins. The disk margins provide a lower

bound on classical gain and phase margins.
• The disk margin circle corresponds to the dashed black line. The disk margin corresponds to the

largest disk centered at (GMD + 1/GMD)/2 that just touches the loop transfer function L. This
location is indicated by the red dot.

The disk margin and multiple channel margins calculation involve the balanced sensitivity function S
+T. For a given peak value of µ(S+T), any simultaneous phase and gain variations applied to each
loop independently will not destabilize the system if the perturbations remain inside the
corresponding circle or disk. This corresponds to the disk margin calculation to find dmi and dmo.

Similarly, the multiple channel margins calculation involves the balanced sensitivity function S+T.
Instead of calculating µ(S+T) a single loop at a time, all the channels are included in the analysis. A
µ-analysis problem is formulated with each channel perturbed by an independent, complex
perturbation. The peak µ(S+T) value guarantees that any simultaneous, independent phase and gain
variations applied to each loop simultaneously will not destabilize the system if they remain inside the
corresponding circle or disk of size µ(S+T).
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For frequency-response data (frd) models, loopmargin uses the techniques of μ-analysis to
compute the disk margin at each frequency point in the model, and returns the weakest margin of
these values. For all other models, the μ-analysis computation identifies the frequency with the
weakest margin.

Compatibility Considerations
loopmargin is not recommended
Not recommended starting in R2018b

To compute disk-based stability margins of SISO and MIMO systems, use diskmargin. For loop-at-a-
time classical gain margins, use allmargin. For stability margin analysis of feedback loops modeled
in Simulink, first linearize the model and then use diskmargin. For more information, see “Stability
Margins of a Simulink Model”.

diskmargin, introduced in R2018b, has improved numeric stability and more reliable results
relative to loopmargin. The new command also includes an option for varying the skew of the disk
for better margin estimates. For more information, see diskmargin.

Update Code

To update your code to use diskmargin or allmargin:

Old code New code
[CM,DM,MM] = loopmargin(L) [DM,MM] = diskmargin(L) returns the disk

margins of each feedback channel with all other
loops closed in the structure DM, and the
multiloop disk margin in the structure MM.

S = allmargin(L) returns the classical loop-at-
a-time gain and phase margins returned by
loopmargin as CM. The margins are organized
differently in the structure S. For more
information, enter help allmargin at the
MATLAB command prompt.

[CMI,DMI,MMI,CMO,DMO,MMO,MMIO] =
loopmargin(P,C)

MMIO = diskmargin(L)

All the multiloop disk margins returned by
loopmargin are in the structure MMIO.

[cm,dm,mm] =
loopmargin(Model,Blocks,Ports)

First linearize the Simulink model and then use
diskmargin or allmargin. For more
information, see “Stability Margins of a Simulink
Model”.

References
Barrett, M.F., Conservatism with robustness tests for linear feedback control systems, Ph.D. Thesis,
Control Science and Dynamical Systems, University of Minnesota, 1980.

Blight, J.D., R.L. Dailey, and D. Gangsass, “Practical control law design for aircraft using multivariable
techniques,” International Journal of Control, Vol. 59, No. 1, 1994, pp. 93-137.
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Bates, D., and I. Postlethwaite, “Robust Multivariable Control of Aerospace Systems,” Delft University
Press, Delft, The Netherlands, ISBN: 90-407-2317-6, 2002.

See Also
allmargin | diskmargin | loopsens | robstab | wcgain | wcdiskmargin

Introduced before R2006a
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loopsens
Sensitivity functions of plant-controller feedback loop

Syntax
loops = loopsens(P,C)

Description
loops = loopsens(P,C) computes the multivariable sensitivity, complementary sensitivity, and
open-loop transfer functions on page 1-292 of the closed-loop system consisting of the controller C in
negative feedback with the plant P. To compute the sensitivity functions for the system with positive
feedback, use loopsens(P,-C).

Examples

Single Input, Single Output (SISO) Loop Sensitivities

Consider PI controller for a dominantly first-order plant, with the closed-loop bandwidth of 2.5 rads/
sec. Since the problem is SISO, all gains are the same at input and output.

gamma = 2; tau = 1.5; taufast = 0.1; 
P = tf(gamma,[tau 1])*tf(1,[taufast 1]); 
tauclp = 0.4; 
xiclp = 0.8; 
wnclp = 1/(tauclp*xiclp); 
KP = (2*xiclp*wnclp*tau - 1)/gamma; 
KI = wnclp^2*tau/gamma; 
C = tf([KP KI],[1 0]);

Form the closed-loop (and open-loop) systems with loopsens, and plot Bode plots of the sensitivity
functions at the plant input.

loops = loopsens(P,C); 
bode(loops.Si,'r',loops.Ti,'b',loops.Li,'g')
legend('Sensitivity','Complementary Sensitivity','Loop Transfer')
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Finally, compare the open-loop plant gain to the closed-loop value of PSi.

bodemag(P,'r',loops.PSi,'b')
legend('Plant','Sensitivity*Plant')
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Multi Input, Multi Output (MIMO) Loop Sensitivities

Consider an integral controller for a constant-gain, 2-input, 2-output plant. For purposes of
illustration, the controller is designed via inversion, with different bandwidths in each rotated
channel.

P = ss([2 3;-1 1]); 
BW = diag([2 5]); 
[U,S,V] = svd(P.d);                % get SVD of Plant Gain 
Csvd = V*inv(S)*BW*tf(1,[1 0])*U'; % inversion based on SVD 
loops = loopsens(P,Csvd); 
bode(loops.So,'g',loops.To,'r',logspace(-1,3,120))
title('Output Sensitivity (green), Output Complementary Sensitivity (red)');
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Input Arguments
P — Plant
dynamic system model | control design block | matrix

Plant, specified as a dynamic system model, control design block, or static gain matrix. P can be SISO
or MIMO, as long as P*C has the same number of inputs and outputs.

P can be continuous time or discrete time. If P is a generalized model (such as genss or uss) then
loopsens uses the current or nominal value of all control design blocks in P.

C — Controller
dynamic system model | control design block | constant matrix

Controller, specified as a dynamic system model, control design block, or static gain matrix. The
controller can be any of the model types that P can be, as long as P*C has the same number of inputs
and outputs. loopsens computes the sensitivity functions on page 1-292 assuming a negative-
feedback closed-loop system. To compute the sensitivity functions for the system with positive
feedback, use loopsens(P,-C).

The loopsens command assumes one-degree-of-freedom control architecture. If you have a two-
degree-of-freedom architecture, then construct C to include only the compensator in the feedback
path, not any reference channels.
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Output Arguments
loops — Sensitivity functions
structure

“Sensitivity functions” on page 1-292 of the feedback loop feedback(P,C), returned in a structure
having the fields shown in the table below. The sensitivity functions are returned as state-space (ss)
models of the same I/O dimensions as C*P. If P or C is a frequency-response-data model, then the
sensitivity functions are frd models.

Field Description
Si Input-to-plant sensitivity function.
Ti Input-to-plant complementary sensitivity function.
Li Input-to-plant loop transfer function.
So Output-to-plant sensitivity function.
To Output-to-plant complementary sensitivity function.
Lo Output-to-plant loop transfer function.
PSi Plant times input-to-plant sensitivity function.
CSo Compensator times output-to-plant sensitivity function.
Poles Poles of the closed loop feedback(P,C). If either P or C is a frequency-

response-data model, then this field is NaN.
Stable 1 if nominal closed loop is stable, 0 otherwise. If either P or C is a frequency-

response-data model, then this field is NaN.

More About
Sensitivity functions

The closed-loop interconnection structure shown below defines the input/output sensitivity,
complementary sensitivity, and loop transfer functions. The structure includes multivariable systems
in which P and C are MIMO systems.

The following table gives the values of the input and output sensitivity functions for this control
structure.
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Description Equation
Input sensitivity Si (closed-loop transfer function from d1 to e1) Si = (I + CP)–1

Input complementary sensitivity Ti (closed-loop transfer function
from d1 to e2)

Ti = CP(I + CP)–1

Output sensitivity So (closed-loop transfer function from d2 to e2) So = (I + PC)–1

Output complementary sensitivity To (closed-loop transfer function
from d2 to e4)

To = PC(I + PC)–1

Input loop transfer function Li Li = CP
Output loop transfer function Lo Lo = PC

See Also
diskmargin | robstab | wcgain | wcdiskmargin

Introduced before R2006a
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loopsyn
Loop shaping controller design with tradeoff between performance and robustness

Syntax
[K,CL,gamma,info] = loopsyn(G,Gd)
[K,CL,gamma,info] = loopsyn(G,Gd,alpha)
[K,CL,gamma,info] = loopsyn(G,Gd,alpha,ord)

Description
loopsyn balances performance and robustness by blending two loop-shaping methods.

• Mixed-sensitivity design (mixsyn), which tends to optimize performance and decoupling at the
expense of robustness

• The Glover-McFarlane method (ncfsyn), which maximizes robustness to plant uncertainty

You can adjust the tradeoff between performance and robustness to obtain satisfactory time-domain
responses while avoiding fragile designs with plant inversion or flexible mode cancellation.

[K,CL,gamma,info] = loopsyn(G,Gd) computes a stabilizing controller K that shapes the open-
loop response G*K to approximately match the specified loop shape Gd. The mixed-sensitivity
performance gamma indicates the closeness of the match. loopsyn tries to minimize gamma, subject
to the constraint that the robustness with K (as measured by ncfmargin) is no worse than half the
maximum achievable robustness. The function also returns the closed-loop transfer function CL and a
structure info containing further information about the controller synthesis.

[K,CL,gamma,info] = loopsyn(G,Gd,alpha) explicitly specifies the tradeoff between
performance and robustness with parameter alpha in the interval [0,1]. Within this interval, smaller
alpha favors performance (mixsyn design) and larger alpha favors robustness (ncfsyn design).
When you specify alpha, loopsyn tries to minimize gamma, subject to the constraint that the
robustness is no worse than alpha times the maximum achievable robustness.

[K,CL,gamma,info] = loopsyn(G,Gd,alpha,ord) specifies the order of the controller K To use
this syntax, you must specify alpha such that 0 < alpha < 1.

Examples

Design Loop-Shaping Controller

Consider the following plant.

s = zpk('s');
G = (s-10)/(s+100);

Design a controller that yields a closed-loop step response with a rise time of about 4 s. A simple
target loop shape for this requirement is Gd = wc/s, where target crossover frequency wc is related
to the desired rise time by t = 2/wc.
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wc = 0.5; 
Gd = wc/s;

Obtain the controller using loopsyn.

[K,CL,gamma] = loopsyn(G,Gd);
gamma

gamma = 1.1744

This value of gamma is close to 1, indicating a fairly good match between the achieved loop shape and
the target loop shape. Compare the achieved open-loop response G*K with the desired response Gd.

sigma(G*K,"b",Gd,"r--",{0.01,10})
grid on
legend("Actual","Target")

Examine the step response of the closed-loop system.

step(CL)
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Specify Tradeoff Between Performance and Robustness

You can use the input argument alpha to specify how much loopsyn favors either performance
(mixsyn design) or robustness (ncfsyn design). By default, loopsyn computes a balanced design,
alpha = 0.5. To change the balance, change alpha. Consider the following plant and target loop
shape.

G = tf(25,[1 10 10 10]); 
Gd = tf(0.5,[1 0]);

Design a loop-shaping controller that maximizes performance (minimizes gamma) subject to the
constraint that the robustness (as determined by ncfmargin) is no worse than 75% of the maximum
achievable robustness. To do so, set alpha to 0.75.

alpha = 0.75;
[K,CL,gamma,info] = loopsyn(G,Gd,alpha);

The maximum achievable robustness margin is returned in the info structure. Compare that value to
the margin achieved by this controller. For ncfmargin, use the shaped plant and corresponding
controller, also returned in info.

info.emax

ans = 0.6474
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ncfmargin(info.Gs,info.Ks)

ans = 0.4862

These values confirm that the achieved robustness is 75% of the maximum robustness achievable by
setting alpha = 1 for the pure ncfsyn design. For this plant, the alpha = 0.75 design yields a good
match to the loop shape without sacrificing very much robustness. Examine the performance and loop
shape with this controller.

gamma

gamma = 1.2145

sigma(G*K,"b",Gd,"r--",{0.01,10})
grid on
legend("Actual","Target")

For details on how to choose a good value of alpha for your application, see “Loop-Shaping
Controller Design”.

Specify Different Shapes for Each Loop in MIMO System

When designing a controller for a MIMO system, if you specify scalar Gd, then loopsyn applies the
same target loop shape to all feedback channels. You can specify a different shape for each loop using
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a diagonal Gd of size Ny-by-Ny, where Ny is the number of feedback loops, or the number of outputs
of G. Consider the following control system with a two-output, two-input plant.

s = tf('s');
G = [(1+0.1*s)/(1+s) 0.1/(s+2) ; 0 (s+2)/(s^2+s+3)];

Design a controller for this plant such as the first feedback channel has a crossover frequency of 1
rad/s and the second has a crossover frequency of 5 rad/s. To so, create the loop shapes wc/s for
each loop and use the append command to create the diagonal Gd.

wc = [1 5]; 
Gd = append(wc(1)/s,wc(2)/s);

Design the controller.

[K,CL] = loopsyn(G,Gd);

Compare the achieved loop shapes with the target loop shape.

bodemag(G*K,Gd,{0.1,100})
grid on
legend("Actual","Target")
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Specify Order of Tuned Controller

You can limit the order of the controller that loopsyn designs using the order argument. To specify
controller order, you must use a value of the parameter alpha such that 0 < alpha < 1.

Load a two-input, two-output plant.

load plant_loopsynOrderExample.mat G
size(G)

State-space model with 2 outputs, 2 inputs, and 7 states.

Design a controller for this plant a loop shape Gd = 0.5/s. Use alpha = 0.5 and let loopsyn
select controller order.

alpha = 0.5;
Gd = tf(0.5,[1 0]);
[K0,CL0,gamma0] = loopsyn(G,Gd,alpha); 
order(K0)

ans = 5

loopsyn returns a controller with five states. Use loopsyn again to design a three-state controller.
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ord = 3;
[K,CL,gamma,info] = loopsyn(G,Gd,alpha,ord); 
order(K)

ans = 3

For this plant, reducing the controller order from five to three yields a small decrease in
performance.

gamma0

gamma0 = 1.0331

gamma

gamma = 1.1826

For an example that shows how to determine a suitable order for the loop-shaping controller, see
“Loop-Shaping Controller Design”.

Two-Degree-of-Freedom Loop-Shaping Controller

loopsyn can also provide a two-input, one output controller suitable for implementing the two-
degree-of-freedom (2-dof) architecture of the following illustration.

This architecture can be useful for mitigating the derivative kick that can occur when the reference
signal changes. To obtain a controller suitable for this implementation, specify a plant and target loop
shape, and call loopsyn.

G = tf(8625,[1 2.389 -5606]);
Gd = tf(80,[1 0])*tf(240,[1 240]);

[K,CL,gamma,info] = loopsyn(G,Gd);

The K2dof field of the info output contains the two degree-of-freedom controller. For a plant with Nu
inputs and Ny outputs, K2dof has Nu outputs and 2*Ny inputs. In this example, because G is SISO,
K2dof has one output and two inputs.

K2dof = info.K2dof;
size(K2dof)

State-space model with 1 outputs, 2 inputs, and 4 states.

To use the controller, create the closed-loop system with the architecture shown above.

L2dof = G*K2dof;
L2dof.InputName = {'r','y'};
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L2dof.OutputName = 'y';
CL2dof = connect(L2dof,'r','y');

Compare the closed-loop step response with the two architectures. For this system, the 2-dof
architecture substantially reduces the overshoot in the response.

step(CL,CL2dof)
legend("1-dof","2-dof")

Input Arguments
G — Plant
dynamic system model

Plant, specified as a dynamic system model such as a state-space (ss) model. If G is a generalized
state-space model with uncertain or tunable control design blocks, then loopsyn uses the nominal or
current value of those elements. G can be SISO or MIMO, and can be a continuous-time or discrete-
time model. G must have at least as many inputs as outputs. G cannot have time delays. Use pade to
approximate delays.

Gd — Target loop shape
dynamic system model
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Target loop shape, specified as a dynamic system model such as a ss, tf, or zpk model. You can also
provide Gd as a frequency-response data (frd) model specifying the desired gain at specific
frequencies. Gd cannot have time delays. Use pade to approximate delays.

For a MIMO plant G with Ny outputs,

• Specify SISO Gd to use the same desired loop shape for all loops.
• Specify Ny-by-Ny diagonal Gd to use a different shape for each feedback loop. One way to

construct such a diagonal Gd is to specify a Gdi for each channel, and then use Gd =
append(Gd1,...,GdNy).

In general, use a target loop shape that has high gain at low frequencies for reference tracking and
disturbance rejection, and low gain at high frequencies for robustness against plant uncertainty. For
more information about how to choose your target loop shape, see “Loop Shaping for Performance
and Robustness”.

alpha — Balance between performance and robustness
0.5 (default) | scalar in [0,1]

Balance between performance and robustness, specified as a scalar value in the range [0,1]. Use
alpha to adjust the balance between performance and robustness as follows:

• alpha = 0 gives the mixsyn design.
• alpha = 1 gives the ncfsyn design.

loopsyn maximizes performance (minimizes gamma) subject to the constraint that the robustness (as
measured by ncfmargin) is no worse than alpha*emax, where emax is the maximum robustness
achievable by the ncfsyn design. The default value alpha = 0.5 yields a balanced design. You can
adjust alpha between 0 and 1 to find the right tradeoff for your application. For an example that
shows the effect of varying alpha, see “Loop-Shaping Controller Design”.

ord — Controller order
positive integer

Controller order, specified as a positive integer. To use this option, you must specify alpha such that
0 < alpha < 1.

Output Arguments
K — Loop-shaping controller
ss model

Loop-shaping controller, returned as a state-space (ss) model. K shapes the open-loop response G*K
to approximately match the specified loop shape Gd. The controller minimizes the performance
gamma subject to the constraint that the stability margin as computed by ncfmargin does not exceed
alpha*emax, where emax is the maximum margin achievable by ncfsyn.

CL — Closed-loop system
ss model

Closed-loop system, returned as a state-space (ss) model. The closed-loop system is given by
feedback(G*K,eye(ny)), where ny is the number of outputs of G.
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gamma — Controller performance
nonnegative scalar | Inf

Controller performance, returned as a nonnegative scalar value or Inf. A value near or below 1
indicates that G*K is close to Gd. Values much greater than one indicate a poor match between the
achieved and desired loop shapes. If loopsyn cannot find a stabilizing controller, gamma is Inf.

gamma is the mixed-sensitivity performance, the cost function minimized by mixsyn, and is given by

γ =
W1S
W3T ∞

, S = I + GK −1, T = I − S,

where W1 and W3 are the mixsyn weights. loopsyn derives these weights from Gd to enforce the
desired loop shape.

info — Additional information about controller synthesis
structure

Additional information about the controller synthesis, returned as a structure containing the
following fields.

Field Description
W Shaping prefilter, returned as a state-space (ss) model. The value of W

is such that the shaped plant Gs = G*W has the desired loop shape
Gd.

Gs Shaped plant Gs = G*W, returned as an ss model.
Ks H∞ controller for the shaped plant Gs (see ncfsyn), returned as an ss

model. For computing the robustness margin with ncfmargin, use Gs
and Ks.

emax Maximum achievable robustness margin, returned as a scalar. This
value is the robustness achieved by the pure ncfsyn design. For
information on interpreting this value, see ncfmargin.

W1,W3 Weighting functions for the mixsyn formulation of the loop-shaping
goal, returned as ss models. loopsyn derives these weights from Gd
to enforce the desired loop shape.

K2dof Two-degree-of-freedom controller, returned as a ss model with 2*ny
inputs and nu outputs, where ny and nu are the numbers of outputs
and inputs of G, respectively. This controller is suitable for a two-
degree-of-freedom implementation that separates the reference signal
from the feedback signal, as in the architecture of the following
diagram.

For an example that shows how to use K2dof, see “Two-Degree-of-
Freedom Loop-Shaping Controller” on page 1-300.
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Compatibility Considerations
loopsyn ignores frequency range
Behavior changed in R2021b

Starting in R2021b, loopsyn automatically generates a design that balances performance and
robustness. As a result of this change, loopsyn might return different results from previous releases.
Additionally, you can no longer specify a frequency range for loop shaping using the syntax
loopsyn(G,Gd,[wmin,wmax]). The loopsyn command ignores any [wmin,wmax] input. Further,
the info output structure no longer contains a Range field.

See Also
mixsyn | ncfsyn | ncfmargin | makeweight

Topics
“Loop-Shaping Controller Design”
“Loop Shaping for Performance and Robustness”

Introduced before R2006a
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ltiarray2uss
Compute uncertain system bounding given LTI ss array

Compatibility

Note ltiarray2uss will be removed in a future release. Use ucover instead.

Syntax
usys = ltiarray2uss(P,Parray,ord)

[usys,wt] = ltiarray2uss(P,Parray,ord)

[usys,wt,diffdata] = ltiarray2uss(P,Parray,ord)

[usys,wt,diffdata] = ltiarray2uss(P,Parray,ord,'InputMult')

[usys,wt,diffdata] = ltiarray2uss(P,Parray,ord,'OutputMult')

[usys,wt,diffdata] = ltiarray2uss(P,Parray,ord,'Additive')

Description
The command ltiarray2uss, calculates an uncertain system usys with nominal value P, and whose
range of behavior includes the given array of systems, Parray.

usys = ltiarray2uss(P,Parray,ord), usys is formulated as an input multiplicative
uncertainty model,

usys = P*(I + wt*ultidyn('IMult',[size(P,2) size(P,2)])), where wt is a stable scalar
system, whose magnitude overbounds the relative difference, (P - Parray)/P. The state order of
the weighting function used to bound the multiplicative difference between P and Parray is ord.
Both P and Parray must be in the classes ss/tf/zpk/frd. If P is an frd then usys will be a ufrd
object, otherwise usys will be a uss object. The ultidyn atom is named based on the variable name
of Parray in the calling workspace.

[usys,wt] = ltiarray2uss(P,Parray,ord), returns the weight wt used to bound the infinity
norm of ((P - Parray)/P).

[usys,wt] = ltiarray2uss(P,Parray,ord,'OutputMult'), uses multiplicative uncertainty at
the plant output (as opposed to input multiplicative uncertainty). The formula for usys is

usys = (I + wt*ultidyn('Name',[size(P,1) size(P,1)])*P).

[usys,wt] = ltiarray2uss(P,Parray,ord,'Additive'), uses additive uncertainty.

usys = P + wt*ultidyn('Name',[size(P,1) size(P,2)]). wt is a frequency domain
overbound of the infinity norm of (Parray - P).
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[usys,wt] = ltiarray2uss(P,Parray,ord,'InputMult'), uses multiplicative uncertainty at
the plant input (this is the default). The formula for usys is usys = P*(I + wt*ultidyn('Name',
[size(P,2) size(P,2)])) .

[usys,wt,diffdata] = ltiarray2uss(P,Parray,ord,type) returns the norm of the
difference (absolute difference for additive, and relative difference for multiplicative uncertainty)
between the nominal model P and Parray. wt satisfies diffdata(w_i) < |wt(w_i)| at all
frequency points.

Examples

Uncertain System Bounding an LTI Array

Consider a third order transfer function with an uncertain gain, filter time constant and a lightly
damped flexible mode. This model is used to represent a physical system from which frequency
response data is acquired.

gain = ureal('gain',10,'Perc',20); 
tau = ureal('tau',.6,'Range',[.42 .9]); 
wn = 40; 
zeta = 0.1; 
usys = tf(gain,[tau 1])*tf(wn^2,[1 2*zeta*wn wn^2]); 
sysnom = usys.NominalValue; 
parray = usample(usys,30); 
om = logspace(-1,2,80); 
parrayg = frd(parray,om); 
bode(parrayg)
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The frequency response data in parray represents 30 experiments performed on the system. The
command ltiarray2uss is used to generate an uncertain model, umod, based on the frequency
response data. Initially an input multiplicative uncertain model is used to characterize the collection
of 30 frequency responses. First and second order input multiplicative uncertainty weight are
calculated from the data.

[umodIn1,wtIn1,diffdataIn] = ltiarray2uss(sysnom,parrayg,1); 
[umodIn2,wtIn2,diffdataIn] = ltiarray2uss(sysnom,parrayg,2); 
bodemag(wtIn1,'b-',wtIn2,'g+',diffdataIn,'r.',om) 
title('Input Multiplicative Uncertainty Model Using ltiarray2uss')
legend('1st order','2nd order','difference','Location','SouthEast')

 ltiarray2uss

1-307



Alternatively, an additive uncertain model is used to characterize the collection of 30 frequency
responses.

[umodAdd1,wtAdd1,diffdataAdd] = ltiarray2uss(sysnom,parrayg,1,'Additive'); 
[umodAdd2,wtAdd2,diffdataAdd] = ltiarray2uss(sysnom,parrayg,2,'Additive'); 
bodemag(wtAdd1,'b-',wtAdd2,'g+',diffdataAdd,'r.',om) 
title('Additive Uncertainty Model Using ltiarray2uss')
legend('1st order','2nd order','difference')
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See Also
fitmagfrd | ultidyn | uss

Topics
“First-Cut Robust Design”

Introduced in R2006a
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ltrsyn
LQG loop transfer-function recovery (LTR) control synthesis

Syntax
[K,SVL,W1] = ltrsyn(G,F,XI,THETA,RHO)

[K,SVL,W1] = ltrsyn(G,F,XI,THETA,RHO,W)

[K,SVL,W1] = ltrsyn(G,F,XI,THETA,RHO,OPT)

[K,SVL,W1] = ltrsyn(G,F,XI,THETA,RHO,W,OPT)

Description
[K,SVL,W1] = ltrsyn(G,F,XI,TH,RHO) computes a reconstructed-state output-feedback
controller K for LTI plant G so that K*G asymptotically recovers plant-input full-state feedback loop
transfer function L(s) = F(Is–A)–1B+D; that is, at any frequency w>0, max(sigma(K*G-L, w))→0 as
ρ→ ∞, where L= ss(A,B,F,D) is the LTI full-state feedback loop transfer function.

[K,SVL,W1] = ltrsyn(G,F1,Q,R,RHO,'OUTPUT') computes the solution to the `dual' problem
of filter loop recovery for LTI plant G where F is a Kalman filter gain matrix. In this case, the recovery
is at the plant output, and max(sigma(G*K-L, w))→0 as ρ→∞, where L1 denotes the LTI filter loop
feedback loop transfer function L1= ss(A,F,C,D).

Only the LTI controller K for the final value RHO(end)is returned.

Inputs  
G LTI plant
F LQ full-state-feedback gain matrix
XI plant noise intensity,

or, if OPT='OUTPUT' state-cost matrix XI=Q,
THETA sensor noise intensity

or, if OPT='OUTPUT' control-cost matrix THETA=R,
RHO vector containing a set of recovery gains
W (optional) vector of frequencies (to be used for plots); if input W is not supplied,

then a reasonable default is used

Outputs  
K K(s) — LTI LTR (loop-transfer-recovery) output-feedback, for the last element of

RHO (i.e., RHO(end))
SVL sigma plot data for the recovered loop transfer function if G is MIMO or, for

SISO G only, Nyquist loci SVL = [re(1:nr) im(1:nr)]
W1 frequencies for SVL plots, same as W when present
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Examples
s=tf('s');G=ss(1e4/((s+1)*(s+10)*(s+100)));[A,B,C,D]=ssdata(G);
F=lqr(A,B,C'*C,eye(size(B,2)));
L=ss(A,B,F,0*F*B);
XI=100*C'*C; THETA=eye(size(C,1));
RHO=[1e3,1e6,1e9,1e12];W=logspace(-2,2);
nyquist(L,'k-.');hold;
[K,SVL,W1]=ltrsyn(G,F,XI,THETA,RHO,W);

See also ltrdemo

Limitations
The ltrsyn procedure may fail for non-minimum phase plants. For full-state LTR (default
OPT='INPUT'), the plant should not have fewer outputs than inputs. Conversely for filter LTR (when
OPT='OUTPUT'), the plant should not have fewer inputs than outputs. The plant must be strictly
proper, i.e., the D-matrix of the plant should be all zeros. ltrsyn is only for continuous time plants
(Ts==0)

Algorithms
For each value in the vector RHO, [K,SVL,W1] = ltrsyn(G,F,XI,THETA,RHO) computes the full-
state-feedback (default OPT='INPUT') LTR controller

K(s) = Kc(Is− A + BKc + KfC− KfDKc)−1Kf

where Kc = F and Kf = lqr(A',C',XI+RHO(i)*B*B',THETA). The “fictitious noise” term
RHO(i)*B*B' results in loop-transfer recovery as RHO(i) → ∞. The Kalman filter gain is
Kf = ∑CTΘ−1 where Σ satisfies the Kalman filter Riccati equation
0 = ∑AT + A∑ − ∑CTΘ−1C∑ + Ξ + ρBBT. See [1] for further details.

Similarly for the 'dual' problem of filter loop recovery case, [K,SVL,W1] =
ltrsyn(G,F,Q,R,RHO,'OUTPUT') computes a filter loop recovery controller of the same form, but
with Kf = F is being the input filter gain matrix and the control gain matrix Kc computed as Kc =
lqr(A,B,Q+RHO(i)*C'*C,R).
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Example of LQG/LTR at Plant Output.

References

[1] Doyle, J., and G. Stein, “Multivariable Feedback Design: Concepts for a Classical/Modern
Synthesis,” IEEE Trans. on Automat. Contr., AC-26, pp. 4-16, 1981.

See Also
h2syn | hinfsyn | lqg | loopsyn | ncfsyn

Introduced before R2006a
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makeweight
Weighting function with monotonic gain profile

Syntax
W = makeweight(dcgain,[freq,mag],hfgain)
W = makeweight(dcgain,[freq,mag],hfgain,Ts)
W = makeweight(dcgain,[freq,mag],hfgain,Ts,N)
W = makeweight(dcgain,wc,hfgain, ___ )

Description
makeweight is a convenient way to specify loop shapes, target gain profiles, or weighting functions
for applications such as controller synthesis and control system tuning.

W = makeweight(dcgain,[freq,mag],hfgain) creates a first-order, continuous-time weight
W(s) satisfying these constraints:

W 0 = dcgain
W Inf = hfgain

W j ⋅ freq = mag.

In other words, the gain of W passes through mag at the finite frequency freq.

W = makeweight(dcgain,[freq,mag],hfgain,Ts) creates a first-order, discrete-time weight
W(z) satisfying these constraints:

W 1 = dcgain
W −1 = hfgain

W e j ⋅ freq ⋅ Ts = mag.

In other words, the gain of W passes through mag at the frequency freq. The frequency freq must
satisfy 0 < freq < π/Ts.

W = makeweight(dcgain,[freq,mag],hfgain,Ts,N) uses an Nth-order transfer function with
poles and zeros in a Butterworth pattern to meet the constraints. The higher the order N, the steeper
the transition from low to high gain. To create a continuous-time higher order weighting function, use
Ts = 0.

W = makeweight(dcgain,wc,hfgain, ___ ) specifies the gain crossover frequency wc. This
syntax is equivalent to setting [freq,mag] to [wc,1]. You can use this syntax with any of the
previous input-argument combinations to create a continuous-time, discrete-time, or Butterworth
weighting function.

Examples
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Continuous-Time Weighting Functions

Create continuous-time weighting functions by specifying the low-frequency gain, high-frequency
gain, and magnitude of the gain at some intermediate frequency.

For instance, create a weighting function with a gain of 40 dB at low frequency, rolling off to –20 dB
at high frequency. Specify further that the gain is about 10 dB at 1 rad/s by putting these values in a
vector [freq,mag]. Specify all the gains in absolute units.

Wl = makeweight(100,[1,3.16],0.1);

Create a weighting function with a gain of –10 dB at low frequency, rising to 40 dB at high frequency.
Specify a 0 dB crossover frequency of 10 rad/s. To specify a 0 dB crossover frequency, you can use the
crossover frequency as the second input argument instead of the vector [freq,mag].

Wh = makeweight(0.316,10,100);

Plot the magnitudes of the weighting functions to confirm that they meet the response specifications.

bodemag(Wl,Wh)
legend
grid on
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Weighting Functions with Roll-Off

Create a gain profile that rolls off at high frequency without flattening. Specify a gain of 40 dB at low
frequency and a crossover frequency of 10 rad/s.

W = makeweight(100,[10 1],0);

Specifying a high-frequency gain of 0 ensures that the frequency response rolls off at high
frequencies without leveling off. Plot the gain profile to confirm this shape.

bodemag(W)
grid on

Discrete-Time Weighting Functions

Create discrete-time weighting functions by specifying the low-frequency gain, high-frequency gain,
magnitude of the gain at some intermediate frequency, and sample time.

Create a weighting function with a sample time of 0.1 s. Specify a gain of 40 dB at low frequency,
rolling off to –20 dB at high frequency. Specify further that the gain is about 10 dB at 0.01 rad/s.
Provide all gains in absolute units.

Wl = makeweight(100,[0.01,3.16],0.1,0.1);
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Create a weighting function with a gain of –10 dB at low frequency, rising to 40 dB at high frequency.
Specify a 0 dB crossover frequency of 2 rad/s and a sample time of 0.1 s. To specify a 0 dB crossover
frequency, you can use the crossover frequency as the second input argument instead of the vector
[freq,mag].

Wh = makeweight(0.316,2,100,0.1);

Plot the magnitudes of the weighting functions to confirm that they meet the response specifications.

bodemag(Wl,Wh)
grid on

The high-frequency leveling of Wh is distorted due to the proximity of its crossover frequency to the
Nyquist frequency.

Higher Order Weighting Functions

By default, makeweight creates first-order weighting functions. If you want a sharper transition
between the low-frequency and high-frequency gains, you can specify the order with the last input
argument. For instance, suppose you want to create a weighting function with a sample time of 0.1 s.
The function has a gain of –10 dB at low frequency, rising to 40 dB at high frequency. Additionally, the
gain passes through 6 dB at 1 rad/s. For comparison, create both a third-order and a first-order
function with these specifications.
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W3 = makeweight(0.316,[1 2],100,0.1,3);
W1 = makeweight(0.316,[1 2],100,0.1);
bodemag(W3,W1)
legend('location','northwest')
grid on

For the first-order function, the high-frequency leveling is distorted due to the proximity of its
crossover frequency to the Nyquist frequency. Using a sharper, higher-order transition ensures that
the function has leveled out before reaching the Nyquist frequency.

To create continuous-time weighting functions of higher order, set Ts = 0. For instance, create
continuous-time weighting functions with the same gain specifications as W1 and W3.

W3c = makeweight(0.316,[1 2],100,0,3);
W1c = makeweight(0.316,[1 2],100);
bodemag(W3c,W1c)
legend('location','northwest')
grid on
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Input Arguments
dcgain — Low-frequency gain
real scalar

Low-frequency gain of the weighting function, specified as a real scalar value. Express the gain in
absolute units. For example, to specify a low-frequency gain of 20 dB, set dcgain = 10.

The low-frequency gain, high-frequency gain, and magnitude must satisfy:

• |dcgain| > mag > |hfgain| for a low-pass weight
• |dcgain| < mag < |hfgain| for a high-pass weight

[freq,mag] — Target magnitude and corresponding frequency
two-element vector

Target magnitude and corresponding frequency, specified as a two-element vector. You specify where
the gain of W transitions between the low-frequency and high-frequency values by specifying a target
magnitude at a particular frequency. For instance, if you set [freq,mag] = [10,0.1], then the
magnitude of W passes through 0.1 (–10 dB) at a frequency of 10 rad/s. Similarly, setting [freq,mag]
= [5,1] specifies a 0 dB (unit gain) crossover frequency of 5 rad/s.

The low-frequency gain, high-frequency gain, and magnitude must satisfy:
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• |dcgain| > mag > |hfgain| for a low-pass weight
• |dcgain| < mag < |hfgain| for a high-pass weight

hfgain — High-frequency gain
real scalar

High-frequency gain of the weighting function, specified as a real scalar value. Express the gain in
absolute units. For example, to specify a high-frequency gain of –20 dB, set dcgain = 0.1.

The low-frequency gain, high-frequency gain, and magnitude must satisfy:

• |dcgain| > mag > |hfgain| for a low-pass weight
• |dcgain| < mag < |hfgain| for a high-pass weight

Ts — Sample time
nonnegative scalar | –1

Sample time of discrete-time weighting function, specified as a nonnegative scalar value or –1. A
positive value sets the sample time in seconds. The special value –1 creates a discrete-time state-
space model with an unspecified sample time.

Setting Ts = 0 creates a continuous-time weighting function. This value is useful when you want to
create higher order continuous-time transfer functions using the N input argument. For an example,
see “Higher Order Weighting Functions” on page 1-316.

N — Order of weighting function
1 (default) | positive integer

Order of weighting function, specified as a positive integer. makeweight uses an Nth-order transfer
function with poles and zeros in a Butterworth pattern to meet the specified gain constraints. The
higher the order N, the steeper the transition from low to high gain.

wc — Crossover frequency
positive scalar

Crossover frequency of the weighting function in radians/second, specified as a positive scalar value.
Using the input argument wc is equivalent to using [freq,mag] = [wc,1].

For discrete-time weighting functions, the crossover frequency must satisfy wc*Ts < π.

Output Arguments
W — Weighting function
state-space model

Weighting function, returned as a state-space (ss) model. For continuous-time weighting functions,
the response of W satisfies the following:

W 0 = dcgain
W Inf = hfgain

W j ⋅ freq = mag.

For discrete-time weighting functions, the response of W satisfies the following:
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W 1 = dcgain
W −1 = hfgain

W e j ⋅ freq ⋅ Ts = mag.

See Also
hinfstruct | hinfsyn | mixsyn | musyn | mkfilter | augw | TuningGoal.LoopShape

Topics
“Mixed-Sensitivity Loop Shaping”

Introduced before R2006a
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matnbr
Number of matrix variables in system of LMIs

Syntax
K = matnbr(lmisys)

Description
matnbr returns the number K of matrix variables in the LMI problem described by lmisys.

See Also
decnbr | lmiinfo | decinfo

Introduced before R2006a
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mat2dec
Extract vector of decision variables from matrix variable values

Syntax
decvec = mat2dec(lmisys,X1,X2,X3,...)

Description
Given an LMI system lmisys with matrix variables X1, . . ., XK and given values X1,...,Xk of
X1, . . ., XK, mat2dec returns the corresponding value decvec of the vector of decision variables.
Recall that the decision variables are the independent entries of the matrices X1, . . ., XK and
constitute the free scalar variables in the LMI problem.

This function is useful, for example, to initialize the LMI solvers mincx or gevp. Given an initial
guess for X1, . . ., XK, mat2dec forms the corresponding vector of decision variables xinit.

An error occurs if the dimensions and structure of X1,...,Xk are inconsistent with the description
of X1, . . ., XK in lmisys.

Examples
Consider an LMI system with two matrix variables X and Y such that

• X is a symmetric block diagonal with one 2-by-2 full block and one 2-by-2 scalar block.
• Y is a 2-by-3 rectangular matrix.

Particular instances of X and Y are

X0 =

1 3 0 0
3 −1 0 0
0 0 5 0
0 0 0 5

,    Y0 =
1 2 3
4 5 6

and the corresponding vector of decision variables is given by

decv = mat2dec(lmisys,X0,Y0)

decv'

ans = 
        1     3     -1     5     1     2     3     4     5     6

Note that decv is of length 10 since Y has 6 free entries while X has 4 independent entries due to its
structure. Use decinfo to obtain more information about the decision variable distribution in X and
Y.

See Also
dec2mat | decinfo | decnbr
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Introduced before R2006a
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mincx
Minimize linear objective under LMI constraints

Syntax
[copt,xopt] = mincx(lmisys,c,options,xinit,target)

Description
[copt,xopt] = mincx(lmisys,c,options,xinit,target) solves the convex program

minimize cTx subject to NTL(x)N ≤ MTR(x)M  (1-11)

where x denotes the vector of scalar decision variables.

The system of LMIs is described by lmisys. The vector c must be of the same length as x. This
length corresponds to the number of decision variables returned by the function decnbr. For linear
objectives expressed in terms of the matrix variables, the adequate c vector is easily derived with
defcx.

The function mincx returns the global minimum copt for the objective cTx, as well as the minimizing
value xopt of the vector of decision variables. The corresponding values of the matrix variables is
derived from xopt with dec2mat.

The remaining arguments are optional. The vector xinit is an initial guess of the minimizer xopt. It
is ignored when infeasible, but may speed up computations otherwise. Note that xinit should be of
the same length as c. As for target, it sets some target for the objective value. The code terminates
as soon as this target is achieved, that is, as soon as some feasible x such that cTx ≤ target is found.
Set options to [] to use xinit and target with the default options.

Control Parameters
The optional argument options gives access to certain control parameters of the optimization code.
In mincx, this is a five-entry vector organized as follows:

• options(1) sets the desired relative accuracy on the optimal value lopt (default = 10–2).
• options(2) sets the maximum number of iterations allowed to be performed by the optimization

procedure (100 by default).
• options(3) sets the feasibility radius. Its purpose and usage are as for feasp.
• options(4) helps speed up termination. If set to an integer value J > 0, the code terminates

when the objective cTx has not decreased by more than the desired relative accuracy during the
last J iterations.

• options(5) = 1 turns off the trace of execution of the optimization procedure. Resetting
options(5) to zero (default value) turns it back on.

Setting option(i) to zero is equivalent to setting the corresponding control parameter to its default
value. See feasp for more detail.
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Tip for Speed-Up
In LMI optimization, the computational overhead per iteration mostly comes from solving a least-
squares problem of the form

min
x

Ax− b

where x is the vector of decision variables. Two methods are used to solve this problem: Cholesky
factorization of ATA (default), and QR factorization of A when the normal equation becomes ill
conditioned (when close to the solution typically). The message

* switching to QR

is displayed when the solver has to switch to the QR mode.

Since QR factorization is incrementally more expensive in most problems, it is sometimes desirable to
prevent switching to QR. This is done by setting options(4) = 1. While not guaranteed to produce
the optimal value, this generally achieves a good trade-off between speed and accuracy.

Memory Problems
QR-based linear algebra (see above) is not only expensive in terms of computational overhead, but
also in terms of memory requirement. As a result, the amount of memory required by QR may exceed
your swap space for large problems with numerous LMI constraints. In such case, MATLAB issues the
error

??? Error using ==> pds 
Out of memory. Type HELP MEMORY for your options.

You should then ask your system manager to increase your swap space or, if no additional swap space
is available, set options(4) = 1. This will prevent switching to QR and mincx will terminate when
Cholesky fails due to numerical instabilities.

References
The solver mincx implements Nesterov and Nemirovski's Projective Method as described in

Nesterov, Yu, and A. Nemirovski, Interior Point Polynomial Methods in Convex Programming: Theory
and Applications, SIAM, Philadelphia, 1994.

Nemirovski, A., and P. Gahinet, “The Projective Method for Solving Linear Matrix Inequalities,” Proc.
Amer. Contr. Conf., 1994, Baltimore, Maryland, pp. 840-844.

The optimization is performed by the C-MEX file pds.mex.

See Also
defcx | mincx | dec2mat | decnbr | feasp | gevp

Introduced before R2006a
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mixsyn
Mixed-sensitivity H∞ synthesis method for robust control loop-shaping design

Syntax
[K,CL,gamma,info] = mixsyn(G,W1,W2,W3)
[K,CL,gamma] = mixsyn(G,W1,W2,W3,gamTry)
[K,CL,gamma] = mixsyn(G,W1,W2,W3,gamRange)
[K,CL,gamma] = mixsyn( ___ ,opts)
[K,CL,gamma,info] = mixsyn( ___ )

Description
[K,CL,gamma,info] = mixsyn(G,W1,W2,W3) computes a controller that minimizes the H∞ norm
of the weighted closed-loop transfer function

M s =
W1S

W2KS
W3T

,

where S = (I + GK)–1 and T = (I – S) is the complementary sensitivity of the following control system.

You choose the weighting functions W1,W2,W3 to shape the frequency responses for tracking and
disturbance rejection, controller effort, and noise reduction and robustness, respectively. For details
about how to choose weighting functions, see “Mixed-Sensitivity Loop Shaping”.

mixsyn computes the controller K that yields the minimum ||M(s)||∞, which is returned as gamma. For
the returned controller K,

S ∞ ≤ γ W1
−1

KS ∞ ≤ γ W2
−1

T ∞ ≤ γ W3
−1 .
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[K,CL,gamma] = mixsyn(G,W1,W2,W3,gamTry) calculates a controller for the target
performance level gamTry. Specifying gamTry can be useful when the optimal controller
performance is better than you need for your application. In that case, a less-than-optimal controller
can have smaller gains and be better conditioned numerically. When W1,W2,W3 capture the desired
limits on the gains of S, KS, and T, use gamtry = 1 to just enforce those limits.

If gamTry is not achievable, mixsyn returns [] for K and CL, and Inf for gamma.

[K,CL,gamma] = mixsyn(G,W1,W2,W3,gamRange) searches the range gamRange for the best
achievable performance. Specify the range with a vector of the form [gmin,gmax]. Limiting the
search range can speed up computation by reducing the number of iterations performed by mixsyn
to test different performance levels.

[K,CL,gamma] = mixsyn( ___ ,opts) specifies additional computation options. To create opts,
use hinfsynOptions. Specify opts after all other input arguments.

[K,CL,gamma,info] = mixsyn( ___ ) returns a structure containing additional information about
the H∞ synthesis computation. You can use this argument with any of the previous syntaxes.

Examples

Loop Shaping with mixsyn

Use mixsyn for sensitivity and complementary sensitivity loop shaping. Create a plant model and
weighting functions that:

• Shape the sensitivity function for reference tracking and disturbance rejection (W1 = 1/S large
inside the control bandwidth).

• Shape the complementary sensitivity for robustness and noise attenuation (W3 = 1/T large
outside the control bandwidth).

• Limit the control effort (W2 = 1/KS large inside the control bandwidth).

(For more information about choosing weighting functions, see “Mixed-Sensitivity Loop Shaping”.)

s = zpk('s');
G = (s-1)/(s+1)^2;

W1 = makeweight(10,[1 0.1],0.01);
W2 = makeweight(0.1,[32 0.32],1);
W3 = makeweight(0.01,[1 0.1],10);

bodemag(W1,W2,W3)
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Design the controller.

[K,CL,gamma] = mixsyn(G,W1,W2,W3);

mixsyn shapes the singular values of the sensitivity function S, the complementary sensitivity
function T, and the control effort R = K*S. Examine the results of the synthesis and the shapes of
these transfer functions.

S = feedback(1,G*K);
KS = K*S;
T = 1-S;
sigma(S,'b',KS,'r',T,'g',gamma/W1,'b-.',ss(gamma/W2),'r-.',gamma/W3,'g-.',{1e-3,1e3})
legend('S','KS','T','GAM/W1','GAM/W2','GAM/W3','Location','SouthWest')
grid
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Input Arguments
G — Plant
dynamic system model

Plant, specified as a dynamic system model such as a state-space (ss) model. G can be any LTI model.
mixsyn assumes the following control structure.

If G is a generalized state-space model with uncertain or tunable control design blocks, then mixsyn
uses the nominal or current value of those elements.
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W1,W2,W3 — Weighting functions
dynamic system model | []

Weighting functions, specified as dynamic system models. Choose the weighting functions W1,W2,W3
to shape the frequency responses for tracking and disturbance rejection, controller effort, and noise
reduction and robustness. Typically:

• For good reference-tracking and disturbance-rejection performance, choose W1 large inside the
control bandwidth to obtain small S.

• For robustness and noise attenuation, choose W3 large outside the control bandwidth to obtain
small T.

• To limit control effort in a particular frequency band, increase the magnitude of W2 in this
frequency band to obtain small KS.

If one of the weights is not needed, set it to []. For instance, if you do not want to restrict control
effort, use W2 = [].

Use makeweight to create weighting functions with the desired gain profiles. For details about
choosing weighting functions, see “Mixed-Sensitivity Loop Shaping”.

If G has NU inputs and NY outputs, then W1,W2,W3 must be either SISO or square systems of size NY,
NU, and NY, respectively.

Because S + T = I, mixsyn cannot make both S and T small (less than 0 dB) in the same frequency
range. Therefore, when you specify weights for loop shaping, there must be a frequency band in
which both W1 and W3 are below 0 dB.

gamTry — Target performance level
positive scalar

Target performance level, specified as a positive scalar. mixsyn attempts to compute a controller
such that the H∞ of the weighted closed-loop system M(s) does not exceed gamTry. If this
performance level is achievable, then the returned controller has gamma ≤ gamTry. If gamTry is not
achievable, mixsyn returns an empty controller.

gamRange — Performance range for search
[0,Inf] (default) | vector of form [gmin,gmax]

Performance range for search, specified as a vector of the form [gmin,gmax]. The mixsyn command
tests only performance levels within that range. It returns a controller with performance:

• gamma ≤ gmin, when gmin is achievable.
• gmin < gamma < gmax, when gmax is achievable and but gmin is not.
• gamma = Inf when gmax is not achievable. In this case, mixsyn returns [] for K and CL.

If you know a range of feasible performance levels, specifying this range can speed up computation
by reducing the number of iterations performed by mixsyn to test different performance levels.

opts — Options
hinfsynOptions object

Additional options for the computation, specified as an options object you create using
hinfsynOptions.
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Use opts to specify options for the underlying hinfsyn computation (see “Algorithms” on page 1-
332). Available options include:

• Display algorithm progress at the command line.
• Turn off automatic scaling and regularization.
• Specify an optimization method.

For information about all options, see hinfsynOptions.

Output Arguments
K — Controller
ss model object | []

Controller, returned as a state-space (ss) model object or [].

If you supply gamTry or gamRange and the specified performance values are not achievable, then K
= [].

CL — Augmented closed-loop transfer function
ss model object | []

Augmented closed-loop transfer function, returned as a state-space (ss) model object or []. The
augmented closed-loop transfer function is given by

M s =
W1S

W2KS
W3T

,

where S = (I + GK)–1 and T = (I – S) is the complementary sensitivity of the unweighted control
system. See “Mixed-Sensitivity Loop Shaping”.

The returned performance level gamma is the H∞ norm of CL.

If you supply gamTry or gamRange and the specified performance levels are not achievable, then CL
= [].

gamma — Controller performance
nonnegative scalar | Inf

Controller performance, returned as a nonnegative scalar value or Inf. This value is the performance
achieved using the returned controller K, and is the H∞ norm of CL (see hinfnorm). If you do not
provide performance levels to test using gamTry or gamRange, then gamma is the best achievable
performance level.

If you provide gamTry or gamRange, then gamma is the actual performance level achieved by the
controller computed for the best passing performance level that hinfsyn tries. If the specified
performance levels are not achievable, then gamma = Inf.

info — Synthesis data
structure | []

Additional synthesis data, returned as a structure or [] (if the specified performance level is not
achievable). info contains data about the underlying hinfsyn computation used by mixsyn to
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minimize the H∞ norm of the closed-loop transfer function M(s). For details about the meaning of the
fields of info, see the info output argument of hinfsyn.

Algorithms
mixsyn uses your weighting functions to generate an augmented plant P = augw(G,W1,W2,W3). It
then invokes hinfsyn to find a controller that minimizes the H∞ norm of the closed-loop transfer
function M(s) = LFT(P,K). For details, see “Mixed-Sensitivity Loop Shaping”.

Compatibility Considerations
Name,Value options are not recommended
Not recommended starting in R2019b

As of R2019b, using Name,Value syntax to specify options for mixsyn is not recommended. Instead,
to set a target performance range, use the gamRange input argument. For other options, create an
options set with hinfsynOptions.

The following table shows how to update your calls to mixsyn to use the recommended ways of
specifying options.

Not Recommended Recommended
[K,CL,GAM] =
mixsyn(___,'GMIN',gmin,'GMAX',gmax)

gamRange = [gmin gmax];
[K,CL,GAM] = mixsyn(___,gamRange)

[K,CL,GAM] = mixsyn(___,'TOLGAM',tol) opts = hinfsynOptions('RelTol',tol);
[K,CL,GAM] = mixsyn(___,opts);

[K,CL,GAM] = mixsyn(___,'METHOD',meth) opts = hinfsynOptions('Method',meth);
[K,CL,GAM] = mixsyn(___,opts);

[K,CL,GAM] =
mixsyn(___,'DISPLAY','on')

opts = hinfsynOptions('Display','on');
[K,CL,GAM] = mixsyn(___,opts);

For more information about these and additional options available for mixsyn computations, see
hinfsynOptions.

info output argument changed
Behavior changed in R2019b

The fields of the optional output argument info changed in R2019b. The new fields of info are the
same as those of hinfsyn. For more information about the change, see “info output argument
changed” on page 1-236 on the hinfsyn reference page, which describes the same change for
hinfsyn in R2018b.

See Also
augw | hinfsyn | makeweight | hinfsynOptions

Topics
“Mixed-Sensitivity Loop Shaping”

Introduced before R2006a
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mkfilter
Generate Bessel, Butterworth, Chebyshev, or RC filter

Syntax
sys = mkfilter(fc,ord,type)

sys = mkfilter(fc,ord,type,psbndr)

Description
sys = mkfilter(fc,ord,type) returns a single-input, single-output analog low pass filter sys as
an ss object. The cutoff frequency (Hertz) is fc and the filter order is ord, a positive integer. The
argument type specifies the type of filter and can be one of the following:

type value Description
'butterw' Butterworth filter
'cheby' Chebyshev filter
'bessel' Bessel filter
'rc' Series of resistor/capacitor filters

The dc gain of each filter (except even-order Chebyshev) is set to unity.

sys = mkfilter(fc,ord,type,psbndr) contains the input argument psbndr that specifies the
Chebyshev passband ripple (in dB). At the cutoff frequency, the magnitude is -psbndr dB. For even-
order Chebyshev filters the DC gain is also -psbndr dB.

Examples

Generate Filters

Generate several different types of filters and compare their frequency responses.

butw = mkfilter(2,4,'butterw'); 
cheb = mkfilter(4,4,'cheby',0.5); 
rc = mkfilter(1,4,'rc'); 
bode(butw,'-',cheb,'--',rc,'-.')
legend('Butterworth','Chebyshev','RC filter')
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Limitations
The Bessel filters are calculated using the recursive polynomial formula. This is poorly conditioned
for high order filters (order > 8).

See Also
augw

Introduced before R2006a
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mktito
Partition LTI system into two-input/two-output system

Syntax
SYS=mktito(SYS,NMEAS,NCONT)

Description
SYS=mktito(SYS,NMEAS,NCONT) adds TITO (two-input/two-output) partitioning to LTI system SYS,
assigning OutputGroup and InputGroup properties such that

Any preexisting OutputGroup or InputGroup properties of SYS are overwritten. TITO partitioning
simplifies syntax for control synthesis functions like hinfsyn and h2syn.

Examples
You can type

P=rss(2,4,5); P=mktito(P,2,2);
disp(P.OutputGroup); disp(P.InputGroup);

to create a 4-by-5 LTI system P with OutputGroup and InputGroup properties

    U1: [1 2 3]
    U2: [4 5]
    Y1: [1 2]
    Y2: [3 4]

Algorithms
[r,c]=size(SYS);
set(SYS,'InputGroup', struct('U1',1:c-NCONT,'U2',c-NCONT+1:c));
set(SYS,'OutputGroup',struct('Y1',1:r-NMEAS,'Y2',r-NMEAS+1:r));

See Also
augw | hinfsyn | h2syn | sdhinfsyn
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modreal
Modal form realization and projection

Syntax
[G1,G2] = modreal(G,cut)

Description
[G1,G2] = modreal(G,cut) returns a set of state-space LTI objects G1 and G2 in modal form
given a state-space G and the model size of G1, cut.

The modal form realization has its A matrix in block diagonal form with either 1x1 or 2x2 blocks. The
real eigenvalues will be put in 1x1 blocks and complex eigenvalues will be put in 2x2 blocks. These
diagonal blocks are ordered in ascending order based on eigenvalue magnitudes.

The complex eigenvalue a+bj is appearing as 2x2 block

a b
−b a

This table describes input arguments for modreal.

Argument Description
G LTI model to be reduced.
cut (Optional) an integer to split the realization. Without it, a complete modal form

realization is returned

This table lists output arguments.

Argument Description
G1,G2 LTI models in modal form

G can be stable or unstable. G1 = (A1, B1, C1, D1), G2 = (A2, B2, C2, D2) and D1 = D + C2(–A2)–1B2 is
calculated such that the system DC gain is preserved.

Examples
Given a continuous stable or unstable system, G, the following commands can get a set of modal form
realizations depending on the split index -- cut:

rng(1234,'twister');
G = rss(50,2,2);
[G1,G2] = modreal(G,2); % cut = 2 for two rigid body modes
G1.D = zeros(2,2); % remove the DC gain of the system from G1
sigma(G,G1,G2)
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Algorithms
Using a real eigen structure decomposition reig and ordering the eigenvectors in ascending order
according to their eigenvalue magnitudes, we can form a similarity transformation out of these
ordered real eigenvectors such that he resulting systems G1 and/or G2 are in block diagonal modal
form.

Note This routine is extremely useful when model has jω-axis singularities, e.g., rigid body dynamics.
It has been incorporated inside Hankel based model reduction routines - hankelmr, balancmr,
bstmr, and schurmr to isolate those jω-axis poles from the actual model reduction process.

See Also
reduce | balancmr | schurmr | bstmr | ncfmr | hankelmr | hankelsv

Introduced before R2006a
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msfsyn
Multi-model/multi-objective state-feedback synthesis

Syntax
[gopt,h2opt,K,Pcl,X] = msfsyn(P,r,obj,region,tol)

Description
Given an LTI plant P with state-space equations

ẋ = Ax + B1w + B2u
z∞ = C1x + D11w + D12u

z2 = C2x + D22u

msfsyn computes a state-feedback control u = Kx that

• Maintains the RMS gain (H∞ norm) of the closed-loop transfer function T∞ from w to z∞ below
some prescribed value γ0 > 0

• Maintains the H2 norm of the closed-loop transfer function T2 from w to z2 below some prescribed
value υ0 > 0

• Minimizes an H2/H∞ trade-off criterion of the form

α T∞ ∞
2 + β T2 2

2

• Places the closed-loop poles inside the LMI region specified by region (see lmireg for the
specification of such regions). The default is the open left-half plane.

Set r = size(d22) and obj = [γ0, ν0, α, β] to specify the problem dimensions and the design
parameters γ0, ν0, α, and β. You can perform pure pole placement by setting obj = [0 0 0 0].
Note also that z∞ or z2 can be empty.

On output, gopt and h2opt are the guaranteed H∞ and H2 performances, K is the optimal state-

feedback gain, Pcl the closed-loop transfer function from w to 
z∞
z2

, and X the corresponding

Lyapunov matrix.

The function msfsyn is also applicable to multi-model problems where P is a polytopic model of the
plant:

ẋ = A(t)x + B1(t)w + B2(t)u
z∞ = C1(t)x + D11(t)w + D12(t)u

z2 = C2(t)x + D22(t)u

with time-varying state-space matrices ranging in the polytope

A(t) B1(t) B2(t)
C1(t) D11(t) D12(t)
C2(t) 0 D22(t)

∈  Co
Ak Bk Ck
C1k D11k D12k
C2k 0 D22k

:k = 1, ..., K
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In this context, msfsyn seeks a state-feedback gain that robustly enforces the specifications over the
entire polytope of plants. Note that polytopic plants should be defined with psys and that the closed-
loop system Pcl is itself polytopic in such problems. Affine parameter-dependent plants are also
accepted and automatically converted to polytopic models.

See Also
lmireg | psys

Introduced before R2006a
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mussv
Compute bounds on structured singular value (µ)

Syntax
bounds = mussv(M,BlockStructure)

[bounds,muinfo] = mussv(M,BlockStructure)

[bounds,muinfo] = mussv(M,BlockStructure,Options)

[ubound,q] = mussv(M,F,BlockStructure)

[ubound,q] = mussv(M,F,BlockStructure,'s')

Description
bounds = mussv(M,BlockStructure) calculates upper and lower bounds on the structured
singular value, or µ, for a given block structure. M is a double array, an frd model, or a state-space
(ss) model.

• If M is an N-D array (with N ≥ 3), then the computation is performed pointwise along the third and
higher array dimensions.

• If M is a frd model, then the computations are performed pointwise in frequency (as well as any
array dimensions).

• If M is a ss model, the computations are performed using state-space algorithms. Frequencies are
adaptively selected, and upper bounds are guaranteed to hold over each interval between
frequencies. M must be a single system, without array dimensions.

BlockStructure is a matrix specifying the perturbation block structure. BlockStructure has 2
columns, and as many rows as uncertainty blocks in the perturbation structure. The i-th row of
BlockStructure defines the dimensions of the i'th perturbation block.

• If BlockStructure(i,:) = [-r 0], then the i-th block is an r-by-r repeated, diagonal real
scalar perturbation;

• if BlockStructure(i,:) = [r 0], then the i-th block is an r-by-r repeated, diagonal complex
scalar perturbation;

• if BlockStructure(i,:) = [r c], then the i-th block is an r-by-c complex full-block
perturbation.

• If BlockStructure is omitted, its default is ones(size(M,1),2), which implies a perturbation
structure of all 1-by-1 complex blocks. In this case, if size(M,1) does not equal size(M,2), an
error results.

If M is a two-dimensional matrix, then bounds is a 1-by-2 array containing an upper (first column)
and lower (second column) bound of the structured singular value of M. For all matrices Delta with
block-diagonal structure defined by BlockStructure and with norm less than 1/bounds(1) (upper
bound), the matrix I - M*Delta is not singular. Moreover, there is a matrix DeltaS with block-
diagonal structure defined by BlockStructure and with norm equal to 1/bounds(2) (lower
bound), for which the matrix I - M*DeltaS is singular.
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The format used in the 3rd output argument from lftdata is also acceptable for describing the block
structure.

If M is an frd, the computations are always performed pointwise in frequency. The output argument
bounds is a 1-by-2 frd of upper and lower bounds at each frequency. Note that
bounds.Frequency equals M.Frequency.

If M is an N-D array (either double or frd), the upper and lower bounds are computed pointwise
along the 3rd and higher array dimensions (as well as pointwise in frequency, for frd). For example,
suppose that size(M) is r×c×d1×...×dF. Then size(bounds) is 1×2×d1×...×dF. Using single index
notation, bounds(1,1,i) is the upper bound for the structured singular value of M(:,:,i), and
bounds(1,2,i) is the lower bound for the structured singular value of M(:,:,i). Here, any i
between 1 and d1·d2...dF (the product of the dk) would be valid.

If M is a ss model, bounds is returned as an frd model.

bounds = mussv(M,BlockStructure,Options) specifies computation options. Options is a
character vector, containing any combination of the following characters:

Option Meaning
'a' Upper bound to greatest accuracy, using LMI solver. This is the default

behavior when the number of decision variables within the D/G scalings is less
than 45.

'f' Force fast upper bound (typically not as tight as the default)
'G' Force upper bound to use gradient method. This is the default behavior when

the number of decision variables within the D/G scalings is greater than or
equal to 45.

'U' Upper-bound “only” (lower bound uses a fast/cheap algorithm).
'gN' Use gain-based lower bound method multiple times. The value of N sets the

number of times, according to 10+N*10. For example, 'g6' uses gain-based
lower bound 70 times. Larger numbers typically give better lower bounds.

If all uncertainty blocks described by blk are real, then the default is 'g1'. If
at least one uncertainty block is complex, then mussv uses power iteration
lower bound by default.

'i' Reinitialize lower bound computation at each new matrix (only relevant if M is
ND array or frd).

'mN' Randomly reinitialize lower bound iteration multiple times. N is an integer
between 1 and 9. For example, 'm7' randomly reinitializes the lower bound
iteration 7 times. Larger numbers are typically more computationally
expensive, but often give better lower bounds.

'p' Use power iteration method to compute lower bound. When at least one of the
uncertainty blocks described by BlockStructure is complex, then 'p' is the
default lower bound method.

's' Suppress progress information (silent).
'd' Display warnings.
'x' Decrease iterations in lower bound computation (faster but not as tight as

default). Use 'U' for an even faster lower bound.
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Option Meaning
'an' Same as 'a', but without automatic prescaling.
'o' Run “old” algorithms, from version 3.1.1 and before. Included to allow exact

replication of earlier calculations.

[bounds,muinfo] = mussv(M,BlockStructure) returns muinfo, a structure containing more
detailed information. The information within muinfo must be extracted using mussvextract.

Generalized Structured Singular Value

ubound = mussv(M,F,BlockStructure) calculates an upper bound on the generalized structured
singular value (generalized µ) for a given block structure. M is a double or frd object. M and
BlockStructure are as before. F is an additional (double or frd).

ubound = mussv(M,F,BlockStructure,'s') adds an option to run silently. Other options are
ignored for generalized µ problems.

Note that in generalized structured singular value computations, only an upper bound is calculated.
ubound is an upper bound of the generalized structured singular value of the pair (M,F), with
respect to the block-diagonal uncertainty described by BlockStructure. Consequently ubound is 1-
by-1 (with additional array dependence, depending on M and F). For all matrices Delta with block-
diagonal structure defined by BlockStructure and norm<1/ubound, the matrix [I-Delta*M;F] is
guaranteed not to lose column rank. This is verified by the matrix Q, which satisfies mussv(M
+Q*F,BlockStructure,'a')<=ubound.

Examples
See mussvextract for a detailed example of the structured singular value.

A simple example for generalized structured singular value can be done with random complex
matrices, illustrating the relationship between the upper bound for µ and generalized µ, as well as
the fact that the upper bound for generalized µ comes from an optimized µ upper bound.

M is a complex 5-by-5 matrix and F is a complex 2-by-5 matrix. The block structure BlockStructure
is an uncertain real parameter δ1, an uncertain real parameter δ2, an uncertain complex parameter δ3
and a twice-repeated uncertain complex parameter δ4.

rng(929,'twister')
M = randn(5,5) + sqrt(-1)*randn(5,5); 
F = randn(2,5) + sqrt(-1)*randn(2,5); 
BlockStructure = [-1 0;-1 0;1 1;2 0]; 
[ubound,Q] = mussv(M,F,BlockStructure); 
bounds = mussv(M,BlockStructure); 
optbounds = mussv(M+Q*F,BlockStructure); 

The quantities optbounds(1) and ubound should be extremely close, and significantly lower than
bounds(1) and bounds(2).

[optbounds(1) ubound] 

ans =

    2.2070    2.1749

[bounds(1)  bounds(2)] 
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ans =

    4.4049    4.1960

Algorithms
The lower bound is computed using a power method, Young and Doyle, 1990, and Packard et al. 1988,
and the upper bound is computed using the balanced/AMI technique, Young et al., 1992, for
computing the upper bound from Fan et al., 1991.

Peter Young and Matt Newlin wrote the original function.

The lower-bound power algorithm is from Young and Doyle, 1990, and Packard et al. 1988.

The upper-bound is an implementation of the bound from Fan et al., 1991, and is described in detail
in Young et al., 1992. In the upper bound computation, the matrix is first balanced using either a
variation of Osborne's method (Osborne, 1960) generalized to handle repeated scalar and full blocks,
or a Perron approach. This generates the standard upper bound for the associated complex µ
problem. The Perron eigenvector method is based on an idea of Safonov, (Safonov, 1982). It gives the
exact computation of µ for positive matrices with scalar blocks, but is comparable to Osborne on
general matrices. Both the Perron and Osborne methods have been modified to handle repeated
scalar and full blocks. Perron is faster for small matrices but has a growth rate of n3, compared with
less than n2 for Osborne. This is partly due to the MATLAB implementation, which greatly favors
Perron. The default is to use Perron for simple block structures and Osborne for more complicated
block structures. A sequence of improvements to the upper bound is then made based on various
equivalent forms of the upper bound. A number of descent techniques are used that exploit the
structure of the problem, concluding with general purpose LMI optimization (Boyd et al.), 1993, to
obtain the final answer.

The optimal choice of Q (to minimize the upper bound) in the generalized µ problem is solved by
reformulating the optimization into a semidefinite program (Packard et al., 1991).
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See Also
mussvextract | robstab | robgain | wcgain | wcdiskmargin

Introduced before R2006a
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mussvextract
Extract muinfo structure returned by mussv

Syntax
[VDelta,VSigma,VLmi] = mussvextract(muinfo)

Description
A structured singular value computation of the form

[bounds,muinfo] = mussv(M,BlockStructure) 

returns detailed information in the structure muinfo. mussvextract is used to extract the
compressed information within muinfo into a readable form.

The most general call to mussvextract extracts three usable quantities: VDelta, VSigma, and
VLmi. VDelta is used to verify the lower bound. VSigma is used to verify the Newlin/Young upper
bound and has fields DLeft, DRight, GLeft, GMiddle, and GRight. VLmi is used to verify the LMI
upper bound and has fields Dr, Dc, Grc, and Gcr. The relation/interpretation of these quantities
with the numerical results in bounds is described below.

Upper Bound Information

The upper bound is based on a proof that det(I - M*Delta) is nonzero for all block-structured
matrices Delta with norm smaller than 1/bounds(1). The Newlin/Young method consists of finding
a scalar β and matrices D and G, consistent with BlockStructure, such that

σ I + GL
2 − 14 DLMDR

−1

β − jGM I + GR
2 − 14 ≤ 1

Here DL, DR, GL, GM, and GR correspond to the DLeft, DRight, GLeft, GMiddle, and GRight fields
respectively.

Because some uncertainty blocks and M need not be square, the matrices D and G have a few
different manifestations. In fact, in the formula above, there are a left and right D and G, as well as a
middle G. Any such β is an upper bound of mussv(M,BlockStructure).

It is true that if BlockStructure consists only of complex blocks, then all G matrices will be zero,
and the expression above simplifies to

σ(DLMDR
−1) ≤ β .

The LMI method consists of finding a scalar β and matrices D and G, consistent with
BlockStructure, such that

M′DrM − β2Dc + j(GcrM −M′Grc) ≤ 0

is negative semidefinite. Again, D and G have a few different manifestations to match the row and
column dimensions of M. Any such β is an upper bound of mussv(M,BlockStructure). If
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BlockStructure consists only of complex blocks, then all G matrices will be zero, and negative
semidefiniteness of M´Dr M-β2Dc is sufficient to derive an upper bound.

Lower Bound Information

The lower bound of mussv(M,BlockStructure) is based on finding a “small” (hopefully the
smallest) block-structured matrix VDelta that causes det(I - M*VDelta) to equal 0. Equivalently,
the matrix M*VDelta has an eigenvalue equal to 1. It will always be true that the lower bound
(bounds(2)) will be the reciprocal of norm(VDelta).

Examples
Suppose M is a 4-by-4 complex matrix. Take the block structure to be two 1-by-1 complex blocks and
one 2-by-2 complex block.

rng(0,'twister')
M = randn(4,4) + sqrt(-1)*randn(4,4); 
BlockStructure = [1 1;1 1;2 2]; 

You can calculate bounds on the structured singular value using the mussv command and extract the
scaling matrices using mussvextract.

[bounds,muinfo] = mussv(M,BlockStructure); 
[VDelta,VSigma,VLmi] = mussvextract(muinfo); 

You can first verify the Newlin/Young upper bound with the information extracted from muinfo. The
corresponding scalings are Dl and Dr.

Dl = VSigma.DLeft 

Dl =

    1.0000         0         0         0
         0    0.7437         0         0
         0         0    1.0393         0
         0         0         0    1.0393

Dr = VSigma.DRight 

Dr =

    1.0000         0         0         0
         0    0.7437         0         0
         0         0    1.0393         0
         0         0         0    1.0393

[norm(Dl*M/Dr) bounds(1)] 

ans =

    6.2950    6.2950

You can first verify the LMI upper bound with the information extracted from muinfo. The
corresponding scalings are Dr and Dc.
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Dr = VLmi.Dr; 
Dc = VLmi.Dc; 
eig(M'*Dr*M - bounds(1)^2*Dc) 

ans =

  -0.0000 - 0.0000i
 -17.7242 - 0.0000i
 -33.8550 + 0.0000i
 -41.2013 - 0.0000i

Note that VDelta matches the structure defined by BlockStructure, and the norm of VDelta
agrees with the lower bound,

VDelta 

VDelta =

   0.1301 - 0.0922i        0                  0                  0          
        0            -0.0121 - 0.1590i        0                  0          
        0                  0            -0.0496 - 0.0708i   0.1272 - 0.0075i
        0                  0             0.0166 - 0.0163i   0.0076 + 0.0334i

[norm(VDelta) 1/bounds(2)] 

ans =

    0.1595    0.1595

and that M*VDelta has an eigenvalue exactly at 1.

eig(M*VDelta) 

ans =

   1.0000 - 0.0000i
  -0.2501 - 0.1109i
   0.0000 + 0.0000i
  -0.3022 + 0.2535i

Keep the matrix the same, but change BlockStructure to be a 2-by-2 repeated, real scalar block
and two complex 1-by-1 blocks. Run mussv with the 'C' option to tighten the upper bound.

BlockStructure2 = [-2 0; 1 0; 1 0]; 
[bounds2,muinfo2] = mussv(M,BlockStructure2,'C'); 

You can compare the computed bounds. Note that bounds2 should be smaller than bounds, because
the uncertainty set defined by BlockStructure2 is a proper subset of that defined by
BlockStructure.

[bounds; bounds2] 

ans =

    6.2950    6.2704
    5.1840    5.1750

You can extract the D, G and Delta from muinfo2 using mussvextract.

[VDelta2,VSigma2,VLmi2] = mussvextract(muinfo2); 
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As before, you can first verify the Newlin/Young upper bound with the information extracted from
muinfo. The corresponding scalings are Dl, Dr, Gl, Gm and Gr.

Dl = VSigma2.DLeft; 
Dr = VSigma2.DRight; 
Gl = VSigma2.GLeft; 
Gm = VSigma2.GMiddle; 
Gr = VSigma2.GRight; 
dmd = Dl*M/Dr/bounds2(1) - sqrt(-1)*Gm; 
SL = (eye(4)+Gl*Gl)^-0.25; 
SR = (eye(4)+Gr*Gr)^-0.25; 
norm(SL*dmd*SR) 

ans =

    1.0000

You can first verify the LMI upper bound with the information extracted from muinfo. The
corresponding scalings are Dr, Dc, Grc and Gcr.

Dr = VLmi2.Dr; 
Dc = VLmi2.Dc; 
Grc = VLmi2.Grc; 
Gcr = VLmi2.Gcr; 
eig(M'*Dr*M - bounds(1)^2 *Dc + j*(Gcr*M-M'*Grc)) 

ans =

 -69.9757 + 0.0000i
 -11.2139 - 0.0000i
 -19.2766 - 0.0000i
 -40.2869 - 0.0000i

VDelta2 matches the structure defined by BlockStructure, and the norm of VDelta2 agrees with
the lower bound,

VDelta2 

VDelta2 =

   0.1932                  0                  0                  0          
        0             0.1932                  0                  0          
        0                  0            -0.1781 - 0.0750i        0          
        0                  0                  0             0.0941 + 0.1688i

[norm(VDelta2) 1/bounds2(2)] 

ans =

    0.1932    0.1932

and that M*VDelta2 has an eigenvalue exactly at 1.

eig(M*VDelta2) 

  ans =

 1.0000 + 0.0000i
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  -0.4328 + 0.1586i
   0.1220 - 0.2648i
  -0.3688 - 0.3219i

See Also
mussv

Introduced before R2006a
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musyn
Robust controller design using mu synthesis

Syntax
[K,CLperf] = musyn(P,nmeas,ncont)
[K,CLperf,info] = musyn(P,nmeas,ncont)
[K,CLperf,info] = musyn(P,nmeas,ncont,Kinit)
[K,CLperf,info] = musyn( ___ ,opts)

[CL,CLperf] = musyn(CL0)
[CL,CLperf,info] = musyn(CL0)
[CL,CLperf,info] = musyn(CL0,blockvals)
[CL,CLperf,info] = musyn( ___ ,opts)
[CL,CLperf,info,runs] = musyn( ___ ,opts)

Description
musyn designs a robust controller for an uncertain plant using D-K iteration, which combines H∞
synthesis (K step) with μ analysis (D step) to optimize closed-loop robust performance.

You can use musyn to:

• Synthesize "black box" unstructured robust controllers.
• Robustly tune a fixed-order or fixed-structure controller made up of tunable components such as

PID controllers, state-space models, and static gains.

For additional information about performing μ synthesis and interpreting results, see “Robust
Controller Design Using Mu Synthesis”.

Full-Order Centralized Controllers

[K,CLperf] = musyn(P,nmeas,ncont) returns a controller K that optimizes the robust
performance of the uncertain closed-loop system CL = lft(P,K). The plant P is a continuous or
discrete uncertain plant with the partitioned form

z
y

=
P11 P12
P21 P22

w
u

,

where:

• w represents the disturbance inputs.
• u represents the control inputs.
• z represents the error outputs to be kept small.
• y represents the measurement outputs provided to the controller.

nmeas and ncont are the numbers of signals in y and u, respectively. y and u are the last outputs and
inputs of P, respectively. The closed-loop system CL = lft(P,K) achieves the robust performance
CLperf, which is the μ upper bound, the robust performance metric calculated by musynperf.
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For this syntax, musyn uses hinfsyn for H∞ synthesis (the K step).

[K,CLperf,info] = musyn(P,nmeas,ncont) returns additional information about each D-K
iteration.

[K,CLperf,info] = musyn(P,nmeas,ncont,Kinit) initializes the D-K iteration process with
the controller Kinit. To restart D-K iteration using the results of the jth iteration from a previous
run, use Kinit = info(j).K.

[K,CLperf,info] = musyn( ___ ,opts) uses additional options for the D-K iteration and
underlying hinfsyn computations. Use musynOptions to create the option set. You can use this
syntax with any of the previous input and output argument combinations.

Fixed-Structure Controllers

[CL,CLperf] = musyn(CL0) optimizes the robust performance by tuning the free parameters in
the tunable, uncertain closed-loop model CL0. The genss model CL0 is an uncertain and tunable
model of the closed-loop system whose robust performance you want to optimize. The model contains:

• Uncertain control design blocks such as ureal and ultidyn to represent the uncertainty
• Tunable control design blocks such as tunablePID, tunableSS, and tunableGain to represent

the tunable components of the control structure

musyn returns the closed-loop model CL with the tunable control design blocks set to the tuned
values. The best achieved robust performance is returned as CLperf.

For this syntax, musyn uses hinfstruct for H∞ synthesis (K step).

[CL,CLperf,info] = musyn(CL0) also returns additional information about each D-K iteration.

[CL,CLperf,info] = musyn(CL0,blockvals) initializes the D-K iteration with the tunable block
values in blockvals. You can specify the block values as a structure or by providing a closed-loop
model whose blocks are tuned to the values you want to initialize. For instance, to use the tuned
values obtained in a previous musyn run, set blockvalues = CL.

[CL,CLperf,info] = musyn( ___ ,opts) uses additional options for the D-K iteration and
underlying hinfstruct computations. Use musynOptions to create the option set. You can use this
syntax with any of the previous input and output argument combinations.

[CL,CLperf,info,runs] = musyn( ___ ,opts) also returns details about each independent
tuning run when you use the 'RandomStart' option of musynOptions to perform additional
randomized runs.

Examples

Unstructured Robust Controller Synthesis

Synthesize a stabilizing robust controller K for the system in the following illustration, where the
plant G includes some dynamic uncertainty. The controller must also reject disturbances injected at
the plant output.
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The nominal plant model G0 is an unstable first-order system.

G0 = tf(1,[1 -1]);

The uncertainty in G0 is as follows:

• At low frequency, below 2 rad/s, the plant can vary up to 25% from its nominal value.
• Around 2 rad/s, the percentage variation starts to increase, reaching 400% at approximately 32

rad/s.

Represent the frequency-dependent model uncertainty with the weight Wu and the uncertain LTI
dynamic uncertainty InputUnc, an ultidyn control design block.

Wu = 0.25*tf([1/2 1],[1/32 1]); 
InputUnc = ultidyn('InputUnc',[1 1]);
G = G0*(1+InputUnc*Wu);

musyn seeks a controller that optimizes robust performance from inputs to outputs. To set up this
problem for musyn, then, insert a weighting function Wp that captures the disturbance rejection goal.

When you provide this augmented plant P to musyn, the function designs a controller that drives the
transfer function from d to e below 1 at all frequencies. That transfer function is Wp/S, where S = 1
– GK is the sensitivity function. Thus, choose Wp to be the inverse of the desired sensitivity. For this
example, choose Wp with:

• Low-frequency gain of 100 (40 dB)
• 0 dB crossover at 0.5 rad/s
• High-frequency gain of 0.25 (–12 dB)
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Wp = makeweight(100,[1 0.5],0.25);
bodemag(Wp)

You can now construct the plant as shown in the block diagram by naming the signals, defining a sum
block, and using connect. Construct the plant so that the control input is the last input, and the
measurement output is the last output.

G.InputName = 'u';
G.OutputName = 'y1';
Wp.InputName = 'y';
Wp.OutputName = 'e';
SumD = sumblk('y = y1 + d');

inputs = {'d','u'};
outputs = {'e','y'};
P = connect(G,Wp,SumD,inputs,outputs);

Use musyn to design a controller K for this uncertain system.

nmeas = 1;
ncont = 1;
[K,CLperf,info] = musyn(P,nmeas,ncont); 

D-K ITERATION SUMMARY:
-----------------------------------------------------------------
                       Robust performance               Fit order
-----------------------------------------------------------------
  Iter         K Step       Peak MU       D Fit             D
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    1           1.345        1.344         1.36             8
    2          0.7923       0.7904       0.7962             4
    3          0.6789       0.6789       0.6857            10
    4          0.6572       0.6572       0.6598             8
    5          0.6538       0.6538       0.6542             8
    6          0.6532       0.6532       0.6533             8

Best achieved robust performance: 0.653

The display shows that the best achieved robust performance is about 0.65. This result means that
the gain from d to e remains below 0.65 for up to 1/0.65 times the uncertainty specified in the plant.
Thus, the controller achieves the robust performance objectives for the full range of modeled
uncertainty. (For more information on interpreting musyn results, see “Robust Controller Design
Using Mu Synthesis”.)

You can examine the robust performance using analysis commands such as robgain and
wcgainplot. For instance, examine the worst-case gain of the closed-loop system.

CL = lft(P,K);
wcg = wcgain(CL)

wcg = struct with fields:
           LowerBound: 0.5283
           UpperBound: 0.5294
    CriticalFrequency: 0

This result confirms that the actual worst-case gain over the modeled uncertainty is about 0.53,
which is within the robust performance of 0.65 guaranteed by musyn.

For this problem, the controller returned by musyn is fairly high order.

size(K)

State-space model with 1 outputs, 1 inputs, and 11 states.

You can try reducing the controller order with model-reduction commands such as balred or reduce
to see whether you can maintain robust performance. (For an example, see the musynperf reference
page.) Or, you can try specifying a lower order controller structure and use musyn to tune it. See
“Robust Tuning of Fixed-Structure Controller” on page 1-355.

Robust Tuning of Fixed-Structure Controller

Tune a fixed-structure controller for the control system in “Unstructured Robust Controller
Synthesis” on page 1-352, which shows how to use musyn to design an unstructured full-order
centralized controller, and returns a controller of order 11. For this example, use the same control
structure, as shown in the diagram, but restrict the structure of K to a fifth-order state-space model.
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First, construct the same plant P as in “Unstructured Robust Controller Synthesis” on page 1-352.
The plant is an uncertain plant G augmented by a sensitivity-weighting function Wp.

G0 = tf(1,[1 -1]);
Wu = 0.25*tf([1/2 1],[1/32 1]); 
InputUnc = ultidyn('InputUnc',[1 1]);
G = G0*(1+InputUnc*Wu);
G.InputName = 'u';
G.OutputName = 'y1';

Wp = makeweight(100,[1 0.5],0.25);
Wp.InputName = 'y';
Wp.OutputName = 'e';

SumD = sumblk('y = y1 + d');
inputs = {'d','u'};
outputs = {'e','y'};
P = connect(G,Wp,SumD,inputs,outputs);

Create a tunableSS control design block to represent the fixed controller structure, a fifth-order
state-space model.

C0 = tunableSS('K',5,1,1);

Form the closed-loop system, which is a generalized state-space (genss) model that has both a
tunable block and a uncertain block.

CL0 = lft(P,C0)

CL0 =

  Generalized continuous-time state-space model with 1 outputs, 1 inputs, 8 states, and the following blocks:
    InputUnc: Uncertain 1x1 LTI, peak gain = 1, 1 occurrences
    K: Tunable 1x1 state-space model, 5 states, 1 occurrences.

Type "ss(CL0)" to see the current value, "get(CL0)" to see all properties, and "CL0.Blocks" to interact with the blocks.

Use musyn to tune the free entries of the controller.

[CL,CLperf,info] = musyn(CL0);

D-K ITERATION SUMMARY:
-----------------------------------------------------------------
                       Robust performance               Fit order
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-----------------------------------------------------------------
  Iter         K Step       Peak MU       D Fit             D
    1           1.344        1.344        1.359             8
    2          0.7902       0.7848       0.7898             6
    3          0.6765       0.6764       0.6801            10
    4          0.6594       0.6592       0.6626            10
    5          0.6581       0.6527        0.661             6
    6          0.6574        0.657       0.6613            10
    7           0.657       0.6514       0.6573            10

Best achieved robust performance: 0.651

Even when you specify the structure of K as a fifth-order state-space model, musyn can find tuned
parameter values that yield very similar robust performance to the 11th-order controller. You can try
still lower controller orders to see whether the robust stability is preserved.

Design Robust Controller With Specified Gain and Phase Margins

The robust controller returned by musyn optimizes robust performance of uncertain feedback
systems. When the uncertain plant contains umargin blocks, this requirement of robust stability is
equivalent to enforcing disk-based gain and phase margins equal to the umargin uncertainty. In this
example, design a robust controller for an uncertain plant, enforcing closed-loop stability against gain
and phase variations at the plant inputs and outputs.

Use the plant from the example "Loop Shaping with mixsyn" on the mixsyn reference page,
introducing some uncertainty in the location of the system poles and zero.

a = ureal('a',1,'PlusMinus',[-0.1,0.1]);
s = zpk('s');
G = (s-a)/(s+a)^2;

The goal is to enforce closed-loop stability against gain and phase variation at the plant inputs and
outputs, over the full range of parameter variation modeled in the plant G. To do so, use the target
gain and phase margins to create umargin uncertain blocks and attach them to the plant. For this
example, suppose that you want stability against gain variations of a factor of 1.5 in either direction,
or phase variations of ±20°.

DGM = getDGM(1.5,20,'tight');
Fin = umargin('Fin',DGM);
Fout = umargin('Fout',DGM);
Gmarg = Fout*G*Fin

Gmarg =

  Uncertain continuous-time state-space model with 1 outputs, 1 inputs, 7 states.
  The model uncertainty consists of the following blocks:
    Fin: Uncertain gain/phase, gain × [0.667,1.5], phase ± 22.6 deg, 1 occurrences
    Fout: Uncertain gain/phase, gain × [0.667,1.5], phase ± 22.6 deg, 1 occurrences
    a: Uncertain real, nominal = 1, variability = [-0.1,0.1], 3 occurrences

Type "Gmarg.NominalValue" to see the nominal value, "get(Gmarg)" to see all properties, and "Gmarg.Uncertainty" to interact with the uncertain elements.

For tuning with musyn, you augment the plant with weighting functions that enforce your
performance requirement such as reference tracking, disturbance rejection, and robustness. For this
example, use the weighting functions described in the example on the on the mixsyn reference page.

 musyn

1-357



W1 = makeweight(10,[1 0.1],0.01);
W2 = makeweight(0.1,[32 0.32],1);
W3 = makeweight(0.01,[1 0.1],10);

Gaug = augw(Gmarg,W1,W2,W3);

Use musyn to design a controller.

[K,gam] = musyn(Gaug,1,1);

D-K ITERATION SUMMARY:
-----------------------------------------------------------------
                       Robust performance               Fit order
-----------------------------------------------------------------
  Iter         K Step       Peak MU       D Fit             D
    1           7.753        1.527        1.539            24
    2           1.131        1.084        1.093            38
    3          0.9987        0.996        1.005            36
    4          0.9961       0.9945       0.9973            36
    5          0.9957       0.9942       0.9963            36

Best achieved robust performance: 0.994

musyn achieves a robust performance of about 1, which tells you that the closed-loop gain remains
below 1 for the full range of uncertainty specified in the plant. To confirm that the resulting controller
achieves the target gain and phase margins, use wcdiskmargin to examine the worst-case gain and
phase margins of the system against simultaneous variations at the plant inputs and outputs. Use the
plant G that contains the parameter uncertainty but not the gain and phase uncertainty.

MMIO = wcdiskmargin(G,K)

MMIO = struct with fields:
           GainMargin: [0.6027 1.6592]
          PhaseMargin: [-27.8448 27.8448]
           DiskMargin: 0.4958
           LowerBound: 0.4958
           UpperBound: 0.4968
    CriticalFrequency: 1
    WorstPerturbation: [1x1 struct]

The worst-case disk-based gain margin of [0.6 1.66] is slightly larger than the target margin of [0.66
1.5], and the worst-case phase margin of ±28° is likewise better than the required margin of ±20°.
Thus, the controller K enforces the desired margins for the entire parameter-uncertainty range of the
plant G.

For an example that uses umargin blocks with musyn to enforce gain and phase margins in a MIMO
control loop, see “Robust Controller for Spinning Satellite”.

Input Arguments
P — Uncertain plant
uss model

Uncertain plant, specified as an uncertain state-space (uss) model. P has inputs [w;u] and outputs
[z;y], where:
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• w represents the disturbance inputs.
• u represents the control inputs.
• z represents the error outputs to be kept small.
• y represents the measurement outputs provided to the controller.

Construct P such that measurement outputs y are the last outputs, and the control inputs u are the
last inputs.

P can optionally contain weighting functions (loop-shaping filters) that represent control objectives
that you want the controller to robustly satisfy. For a detailed example that constructs such an
augmented plant for μ synthesis, see “Robust Control of an Active Suspension”.

nmeas — Number of measurement outputs
1 (default) | nonnegative integer

Number of measurement output signals in the plant, specified as a nonnegative integer. The function
takes the last nmeas plant outputs as the measurements y. The returned controller K has nmeas
inputs.

ncont — Number of control inputs
1 (default) | nonnegative integer

Number of control input signals in the plant, specified as a nonnegative integer. The function takes
the last ncont plant inputs as the controls u. The returned controller K has ncont outputs.

Kinit — Initial value of controller
dynamic system model

Initial value of the controller, specified as a dynamic system model, such as a state-space (ss) model.
By default, musyn begins by computing an H∞ controller for the nominal system. Use Kinit to start
with a different controller. Setting Kinit = info(j).K uses the controller computed in the jth D-K
iteration of the musyn run that produced info.

One use of this input argument is to continue iterating after musyn reaches the maximum number of
iterations specified by the 'MaxIter' option of musynOptions. If the display shows that musyn is
still making progress when it stops iterating, you can run musyn again, starting with the last
synthesized controller, to see how much more musyn can improve the robust performance.

opts — Additional options
musynOptions object

Additional options for the computation, specified as an options object you create using
musynOptions. Available options include the following:

• Turn on a full display of algorithm progress that pauses after each D-K iteration so that you can
examine intermediate results.

• Use mixed μ synthesis to treat real uncertain parameters as real rather than as complex, for a less
conservative and possibly more robust controller.

• Set maximum orders for the functions used to fit the D and G scalings.
• Use parallel computing for independent optimization runs when tuning a fixed-structure

controller.

For information about all available options, see musynOptions.
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CL0 — Closed-loop system with tunable controller elements
genss model

Closed-loop system with tunable controller elements, specified as a generalized state-space (genss)
model with both uncertain and tunable control design blocks. Construct CL0 by creating and
interconnecting:

• Numeric LTI models representing the fixed components of the control system
• Uncertain control design blocks, such as ureal and ultidyn blocks, representing the uncertain

components of the plant
• Optional LTI weighting functions (loop-shaping filters) that represent control objectives
• Tunable control design blocks such as tunablePID, tunableSS, and tunableGain to represent

tunable components of the controller C0

For an example that shows how to build such a model, see “Build Tunable Control System Model With
Uncertain Parameters”.

blockvals — Initial values of tunable parameters
structure | genss model

Initial values of the tunable parameters in CL0, specified as a structure or as a genss model. By
default, musyn begins by tuning the controller parameters for the nominal system. Use blockvals to
start with a different controller. Specify the initial parameter values as:

• A structure whose fields are the names of the tunable blocks, and whose values are control design
blocks having the desired current values. For instance, if you have a tuned system CL obtained in
a previous musyn run, you can initialize with the tuned values of the controller blocks in CL by
setting blockvals = CL.Blocks.

• A genss model whose tunable blocks have the desired current value.

Setting blockvals = info(j).K uses the tuned values computed in the jth D-K iteration of the
musyn run that produced info. For instance, if you have a tuned system CL, you can initialize with its
tuned values by setting blockvals = CL. Such initialization can be useful for continuing iteration
after musyn reaches the maximum number of iterations. If the display shows that musyn is still
making progress when it stops iterating, you can run musyn again, starting with the last synthesized
controller, to see how much more musyn can improve the robust performance.

Output Arguments
K — Controller
ss model

Controller that yields the robust H∞ performance CLperf, returned as a state-space (ss) model. The
controller has nmeas inputs and ncont outputs.

The order of K depends on the order of the fitting functions for the D and G scalings and the number
of uncertain blocks in your system. For information on how to reduce the order of the returned
controller, see “Improve Results of Mu Synthesis”.

CLperf — Best achieved robust performance
positive scalar

1 Functions

1-360



Best achieved robust performance, returned as a positive scalar. musyn attempts to optimize the
controller K to minimize this value. The closed-loop gain from w to z remains below CLperf for
uncertainty up 1/CLperf times the uncertainty specified in the plant. For instance, if CLperf is
1.125, then the closed-loop gain remains below 1.125 for up to 0.8 times the uncertainty specified in
the plant. Use uscale to convert this normalized amount of uncertainty into the actual uncertainty
ranges they represent.

For more information on the computation and interpretation of this quantity, see “Robust
Performance Measure for Mu Synthesis”. For information on how to improve the best achieved robust
performance, see “Improve Results of Mu Synthesis”.

info — Details of D-K iteration results
structure array

Details of D-K iteration results, returned as a structure array. info(j) contains the results of the jth
D-K iteration in the run. info has the following fields.

Field Description
K Optimal controller found in the K step of this iteration, returned as a

state-space (ss) model or as a structure containing tuned control design
blocks.

• For unstructured controller synthesis, info(j).K is a state-space
model.

• For fixed-structure controller tuning, info(j).K is a structure whose
names are the names of the tunable blocks in CL0. The values are
tunable control design blocks with current values set to the tuned
value.

gamma Optimized scaled H∞ performance, returned as a scalar. This scaled
performance is achieved by optimal controller info(j).K. The default
command-window display shows this value in the K Step column. For
details about the computation and interpretation of this quantity, see
“Robust Performance Measure for Mu Synthesis”.

KInfo H∞ synthesis data, returned as a structure.

• For centralized, full-order controller synthesis, this structure is the
same as the info output argument of hinfsyn.

• For fixed-structure controller tuning, this structure is the same as the
info output argument of hinfstruct.

PeakMu Robust performance μ of the closed-loop system with controller
info(j).K, returned as a positive scalar value. The default command-
window display shows this value in the Peak MU column . For details
about the computation and interpretation of this quantity, see “Robust
Performance Measure for Mu Synthesis”.
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Field Description
DG D and G scaling data from robust performance analysis in this iteration,

returned as a structure with the following fields.

• Frequency — Vector of frequencies for which μ analysis was
performed

• Dr, Dc, Gcr — Values of the scaling factors Dr(ω), Dc(ω), and Gcr(ω) at
the corresponding frequencies.

For more information about D and G scaling, see “Robust Performance
Measure for Mu Synthesis”.

dr,dc,PSI Rational fit of the D and G scaling data, returned as ss models. For
details about how musyn fits the scaling data, see “Robust Performance
Measure for Mu Synthesis”.

FitOrder Orders of the functions used to fit the scaling data in this iteration,
returned as a two-element vector. The two entries are the fit order for
the D and G scalings, respectively. The default command-window display
shows these values in the Fit Order column.

PeakMuFit Scaled H∞ performance achieved with info(j).K and the fitted D and G
scalings, returned as a scalar. The default command-window display
shows this value in the DG Fit column .

CL — Tuned closed-loop system
genss model

Tuned closed-loop system, returned as a generalized state-space genss model with the same
uncertain and tunable control design blocks as CL0. The current values of the tunable blocks in
CL.Blocks are set to the tuned values.

runs — Information about each independent run
structure array

Information about each independent randomized run, returned as a structure array. Use this output
with fixed-structure μ synthesis when you set the 'RandomStart' option of musynOptions to N >
0. That option causes musyn to perform multiple independent D-K iteration runs initialized from
different values of controller parameters. runs(j) contains the results of the jth independent restart
in the following fields.

Field Description
K Optimal controller found in this run, returned as a structure containing

the tuned values of the control design blocks.
muPerf Best achieved robust H∞ performance for this run, returned as a positive

scalar. The controller that musyn returns when you use multiple runs is
the one for which runs(j).muPerf is smallest.

Info Details of D-K iteration results, returned as a structure array.
runs(j).Info contains fields corresponding to those of the info
output of musyn, for the jth run.
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Limitations
• For discrete-time plants, sample times that are very small compared to other dynamics in the

problem can cause the synthesis to fail due to numeric issues. For best results, choose sample
times such that significant dynamics (system dynamics and weighting functions) are not more than
a decade or two below the Nyquist frequency. The issue arises because the dynamics of the D and
G scalings tend to concentrate around the system dynamics. A too-small sample time results an
accumulation of poles near z = 1 (relative to the Nyquist frequency), which causes numeric
problems with the Riccati solvers. Alternatively, design in continuous time.

Tips
• For more information on how to interpret the displays and outputs of musyn, see “Robust

Controller Design Using Mu Synthesis”.
• For information about how to improve the results you obtain with musyn, see “Improve Results of

Mu Synthesis”.

Algorithms
musyn uses an iterative process called D-K iteration. In this process, the function:

1 Uses H∞ synthesis to find a controller that minimizes the closed-loop gain of the nominal system.
2 Performs a robustness analysis to estimate the robust H∞ performance of the closed-loop system.

This amount is expressed as a scaled H∞ norm involving dynamic scalings called the D and G
scalings (the D step).

3 Finds a new controller to minimize the scaled H∞ norm obtained in step 2 (the K step).
4 Repeats steps 2 and 3 until the robust performance stops improving.

For more details about how this algorithm works, see “D-K Iteration Process”.

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

When you use musyn to tune a fixed-structure robust controller, you can use parallel computing for
the underlying hinfstruct computation. To run in parallel, set 'UseParallel' to true using
musynOptions.

See Also
musynOptions | musynperf | hinfsyn | hinfstruct | wcgain | uscale

Topics
“Robust Controller Design Using Mu Synthesis”
“Improve Results of Mu Synthesis”
“Simultaneous Stabilization Using Robust Control”
“Control of Aircraft Lateral Axis Using Mu Synthesis”
“Robust Controller for Spinning Satellite”
“Control of a Spring-Mass-Damper System Using Mixed-Mu Synthesis”
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musynOptions
Options for musyn

Syntax
opts = musynOptions
opts = musynOptions(Name,Value)

Description
opts = musynOptions returns the default options for performing μ synthesis with the musyn
command.

opts = musynOptions(Name,Value) creates an option set with the options specified by one or
more name-value pair arguments.

Examples

Specify Algorithm Options for Mu Synthesis

Create an options set for musyn that turns on mixed-μ analysis for real uncertainty, restricts the D
and G scalings for repeated ureal blocks so they are diagonal, and limits the maximum number of D-
K iterations to 20.

opts = musynOptions('MixedMU','on','FullDG',false,'MaxIter',20)

opts = 
  musyn with properties:

          Display: 'short'
          MaxIter: 20
       TargetPerf: 0
          TolPerf: 0.0100
          MixedMU: 'on'
           FullDG: [0 0]
         FitOrder: [5 2]
    FrequencyGrid: [0x1 double]
        AutoScale: 'on'
       Regularize: 'on'
        LimitGain: 'on'
      RandomStart: 0
      UseParallel: 0
         MinDecay: 1.0000e-07
     MaxFrequency: Inf

Alternatively, start with the default options set, and use dot notation to change option values.

opts = musynOptions;
opts.MixedMu = 'on';
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opts.FullDG  = false;
opts.MaxIter = 20;

You can now use opts as an input argument to musyn to perform μ synthesis using the specified
options.

Input Arguments
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: opts = musynOptions('MaxIter',20,'MixedMU','on') creates an option set for
musyn to specify that the function take into account the presence of real uncertainty and to stop the
D-K iteration process after at most 20 iterations.

General Options

Display — Flag to display progress of iterations
'short' (default) | 'full' | 'off'

Flag to display progress of D-K iterations and generate report in the command window, specified as
the comma-separated pair consisting of 'Display' and 'short', 'full', or 'off'.

• 'short' — Display a brief summary after each iteration.
• 'full' — Pause after each iteration and display detailed results, including plots of D and G

scaling data and the frequency dependence of μ.
• 'off' — Turn off the display.

For details on how to interpret the default 'short' display and the 'full' display, see “Robust
Performance Measure for Mu Synthesis”.
Example: opts = musynOptions('Display','off') creates an option set for musyn that turns
the display off.

MaxIter — Maximum number of D-K iterations
10 (default) | positive integer

Maximum number of D-K iterations, specified as the comma-separated pair consisting of 'MaxIter'
and a positive integer. musyn stops after the specified number of iterations or when the stopping
tolerance specified by the 'TolPerf' option is reached, whichever is fewer.
Example: opts = musynOptions('MaxIter',20) creates an option set for musyn that specifies a
maximum of 20 iterations.

TargetPerf — Target robust H∞ performance
0 (default) | nonnegative scalar

Target robust H∞ performance, specified as the comma-separated pair consisting of 'TargetPerf'
and a nonnegative scalar. By default, musyn tries to drive the robust H∞ performance (PeakMu in the
default display) to zero in each iteration. If you set 'TargetPerf' to a nonzero value, then D-K
iteration terminates when the robust H∞ performance drops below this target value. If you know your
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system can tolerate worse values of this performance metric, increasing this value can speed up the
H∞ part of the D-K iteration. For details about this performance metric, see musynperf.
Example: opts = musynOptions('TargetPerf',1) creates an option set for musyn that specifies
a target H∞ performance value of 1.

TolPerf — Stopping tolerance
0.01 (default) | 0 | nonnegative scalar

Stopping tolerance, specified as the comma-separated pair consisting of 'TolPerf' and a
nonnegative scalar. The musyn computation terminates when the robust H∞ performance improves by
less than this value over two consecutive iterations. Because of the limited accuracy of fitting the D
and G scalings, reducing 'TolPerf' below the default does not necessarily yield more precise
results.

If 'TolPerf' = 0, then musyn always performs the number of iterations specified by 'MaxIter',
regardless changes in the robust performance from iteration to iteration.
Example: opts = musynOptions('TolPerf',0) creates an option set for musyn that causes the
function to always perform the number of iterations specified by MaxIter.

Options for D Step (μ Analysis)

MixedMU — Option to specify real or complex μ analysis
'off' (default) | 'on'

Option to specify real or complex μ analysis, specified as the comma-separated pair consisting of
'MixedMU' and 'off' or 'on'. By default, musyn treats all uncertainties as complex, which can
result in overly conservative estimates for the upper bound on μ. If your plant has real uncertain
parameters, try setting 'MixedMu' to 'on' to see if musyn returns a controller with better
performance.

For more information, see “Improve Results of Mu Synthesis”.
Example: opts = musynOptions('MixedMU','on') creates an option set for musyn that causes
the function to take into account the presence of real uncertainty.

FullDG — Structure of D and G scalings
true (default) | false | [true false] | [false true]

Structure of D and G scalings, specified as the comma-separated pair consisting of 'FullDG' and
true, false, [true false], or [false true].

By default, musyn uses full scalings for uncertain blocks that appear multiple times in the control
system. Full scaling matrices can have frequency-dependent entries both on and off the diagonal. The
alternative, diagonal scaling, is equivalent to treating each repeated block as an independent
instance of the uncertain parameter. Therefore, full scaling is less conservative than diagonal scaling,
and can yield better robust performance.

However, when blocks are repeated more than about four or five times, full scaling can be
impractical, leading to lengthy computation, undesirably high-order controllers, or both. In such
cases, restricting scalings to diagonal can improve results. To do so, set 'FullDG' to:

• false to limit both D and G scalings to diagonal.
• [true false] to use full D scaling but diagonal G scaling. This option is useful because fitting

full G scalings is more likely to cause high-order controllers than full D scaling.
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• [false true] to use full G scaling but diagonal D scaling. This option is useful if you need full G
scaling to get a good fit, but observe that full D scaling does not improve musyn results.

For details about how the musyn algorithm uses D and G scalings, see “Robust Performance Measure
for Mu Synthesis”.
Example: opts = musynOptions('FullDG',false) creates an option set for musyn that causes
the function to use diagonal scalings for both D and G.

FitOrder — Maximum order for fitting D and G scaling data
[5 2] (default) | vector of two positive integers

Maximum order for fitting D and G scaling data, specified as the comma-separated pair consisting of
'FitOrder' and a vector of two positive integers. The integers specify the maximum fit orders for
the D and G scalings, respectively. (For details about how the musyn algorithm uses and fits scalings,
see “Robust Performance Measure for Mu Synthesis”.)

For each iteration, musyn fits each entry in the D and G scaling matrices by a rational function whose
order is automatically selected. By default, the maximum order is 5 for D scaling and 2 for G scaling.
(G scaling is for dynamics in addition to dynamics needed to capture sign changes, so the final order
of the G fit can be higher.) In general, the higher the order of these functions, the higher the order of
the resulting controller.

To see whether you need to increase the maximum order, examine the musyn command-line display
for a rough indication of fit quality. The Peak MU and DG Fit columns of the display give the best
obtained robust performance before and after fitting, respectively. If the value for any given iteration
increases drastically after fitting, you might obtain better results by increasing the maximum order.

Conversely, if the default maximum scaling order yields a good result, you can try lowering the
maximum order to see if musyn returns a lower-order controller with similar performance.
Example: opts = musynOptions('FitOrder',[3 2]) creates an option set for musyn that
reduces the maximum fit order to 3 for the D scaling and 2 for the G scaling.

FrequencyGrid — Frequency grid used for μ analysis
[] (default) | vector of frequencies

Frequency grid used for μ analysis, specified as the comma-separated pair consisting of
'FrequencyGrid' and an empty vector or a vector of frequencies in radians per second. By default,
musyn computes an appropriate frequency grid based on system dynamics and the frequency
dependence of the D and G scaling data. This default generally yields better results than a custom
frequency grid, which restricts the computation to the specified frequencies regardless of the actual
frequency dependence of the scaling data. Therefore, specifying frequencies is not recommended
unless you know the frequency range in which D and G vary.

Options for K Step with Unstructured Controller (hinfsyn Controller Design)

AutoScale — Automatic plant scaling
'on' (default) | 'off'

Automatic plant scaling, specified as the comma-separated pair consisting of 'AutoScale' and one
of the following:

• 'on' — The underlying hinfsyn computation in the K step automatically scales the plant states,
controls, and measurements to improve numerical accuracy. musyn always returns the controller
in the original unscaled coordinates.
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• 'off' — hinfsyn does not change the plant scaling. Turning off scaling when you know your
plant is well scaled can speed up the computation.

Example: opts = musynOptions('AutoScale','off') creates an option set for musyn that
turns off automatic scaling for the underlying hinfsyn computation.

Regularize — Automatic regularization
'on' (default) | 'off'

Automatic regularization of the plant, specified as the comma-separated pair consisting of
'Regularize' and one of the following:

• 'on' — The underlying hinfsyn computation in the K step automatically regularizes the plant to
enforce certain nonsingularity requirements (see hinfsyn). Regularization is a process of adding
extra disturbances and errors to handle singular problems.

• 'off' — hinfsyn does not regularize the plant. Turning off regularization can speed up the
computation when you know your problem is far enough from singular.

Example: opts = musynOptions('Regularize','off') creates an option set for musyn that
turns off regularization for the underlying hinfsyn computation.

LimitGain — Limit on controller gains
'on' (default) | 'off'

Limit on controller gains, specified as the comma-separated pair consisting of 'LimitGain' and
either 'on' or 'off'. For continuous-time plants, regularization of plant feedthrough matrices D12 or
D21 (see hinfsyn) can result in controllers with large coefficients and fast dynamics. Use this option
to automatically seek a controller with the same performance but lower gains and better
conditioning.

Options for K Step with Structured Controller (hinfstruct Controller Design)

RandomStart — Number of starts with randomized parameter values
0 (default) | positive integer

Number of additional optimization starts with randomized values of tunable controller parameters,
specified as the comma-separated pair consisting of 'RandomStart' and 0 or a positive integer.

By default, the underlying hinfstruct computation performs a single optimization run starting from
the initial values of the tunable parameters. hinfstruct finds a local minimum of the gain
minimization problem. To mitigate the risk of premature termination due to a local minimum that is
not the best performing controller, you can perform multiple independent D-K iteration runs
initialized from different values of controller parameters. Setting RandomStart = N > 0 runs N
additional musyn optimizations starting from N randomly generated parameter values.

Randomization only affects the initialization of the overall D-K iteration run. It does not affect each
call to hinfstruct within a D-K iteration run.

When all runs are complete, musyn uses the best design that results from the multiple runs.

Use with 'UseParallel' = true to distribute independent optimization runs among MATLAB
workers (requires Parallel Computing Toolbox software).
Example: opts = musynOptions('RandomStart',5) creates an option set for musyn that runs
the underlying hinfstruct computation a total of six times, using randomized initial values for the
tunable parameters.
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UseParallel — Option to enable parallel computing
false (default) | true

Option to enable parallel computing, specified as the comma-separated pair consisting of
'UseParallel' and false or true. When you use musyn to tune a structured controller, set this
option to true to distribute independent optimization runs among MATLAB workers in a parallel
pool. If there is an available parallel pool, then the software performs independent optimization runs
concurrently among workers in that pool. If no parallel pool is available, one of the following occurs:

• If you select Automatically create a parallel pool in your Parallel Computing Toolbox
preferences (Parallel Computing Toolbox), then the software starts a parallel pool using the
settings in those preferences.

• If you do not select Automatically create a parallel pool in your preferences, then the software
performs the optimization runs successively, without parallel processing.

Using parallel computing requires Parallel Computing Toolbox software.
Example: opts = musynOptions('UseParallel',true) creates an option set for musyn that
turns on parallel computing for the underlying hinfstruct computation.

MinDecay — Minimum decay rate for closed-loop poles
1e-7 (default) | positive scalar

Minimum decay rate for closed-loop poles, specified as the comma-separated pair consisting of
'MinDecay' and a positive scalar value. The poles of the closed-loop system are constrained to
satisfy Re(p) < -MinDecay. Increase this value to improve the stability of closed-loop poles that do
not affect the closed-loop gain due to pole-zero cancellations.

Specify MinDecay in units of 1/TimeUnit, relative to the TimeUnit property of the system you are
tuning.

MaxFrequency — Maximum closed-loop natural frequency
Inf (default) | positive scalar

Maximum closed-loop natural frequency, specified as the comma-separated pair consisting of
'MaxFrequency' and Inf or a positive scalar value. Setting MaxFrequency constrains the closed-
loop poles to satisfy |p| <  MaxFrequency. To let musyn choose the closed-loop poles without such
constraint, set MaxFrequency = Inf. To prevent unwanted fast dynamics or high-gain control, set
MaxFrequency to a finite value.

Specify MaxFrequency in units of 1/TimeUnit, relative to the TimeUnit property of the system you
are tuning.

Output Arguments
opts — Options for musyn
musyn options object

Options for the musyn computation, returned as a musyn options object. Use the object as an input
argument to musyn. For example:

[K,CLperf,info] = musyn(P,nmeas,ncont,opts);
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See Also
musyn

Topics
“Robust Controller Design Using Mu Synthesis”
“Improve Results of Mu Synthesis”
“Robust Performance Measure for Mu Synthesis”
“D-K Iteration Process”

Introduced in R2019b
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musynperf
Robust H∞ performance optimized by musyn

Syntax
[gamma,wcu] = musynperf(clp)
[gamma,wcu] = musynperf(clp,w)
[gamma,wcu] = musynperf( ___ ,opts)
[gamma,wcu,info] = musynperf( ___ )

Description
The robust H∞ performance of an uncertain system is the smallest value γ such that the I/O gain of
the system stays below γ for all modeled uncertainty up to size 1/γ (in normalized units). The musyn
function synthesizes a robust controller by minimizing this quantity for the closed-loop system over
all possible choices of controller. musynperf computes this quantity for a specified uncertain model.
For a detailed discussion of robust H∞ performance and how it is computed, see “Robust Performance
Measure for Mu Synthesis”.

[gamma,wcu] = musynperf(clp) calculates the robust H∞ performance for an uncertain closed-
loop system clp. The robust H∞ performance is the smallest value γ for which the peak I/O gain stays
below γ for all modeled uncertainty up to 1/γ, in normalized units. For example, a value of γ = 1.125
implies the following:

• The I/O gain of clp remains less than 1.125 as long as the uncertain elements stay within 0.8
normalized units of their nominal values. In other words, for uncertain element values within 0.8
normalized units, the largest possible H∞ norm is 1.125.

• For some perturbation of size 0.8 normalized units, the peak I/O gain is 1.125.

The peak I/O gain is the maximum I/O gain over all inputs, which is also the peak of the largest
singular value over all frequencies and uncertainties. In other words, if Δ represents all possible
values of the uncertain parameters in the closed-loop transfer function CLP(jω), then

γ = max
Δ

max
ω

σmax CLP jω .

The output structure gamma contains upper and lower bounds on the robust H∞ performance and the
critical frequency at which the I/O gain of clp reaches the lower bound. The structure wcu contains
the uncertain-element values that drive the peak I/O gain to the lower bound.

[gamma,wcu] = musynperf(clp,w) computes the robust H∞ performance at the frequencies
specified by w.

• If w is a cell array of the form {wmin,wmax}, then musynperf restricts the computation to the
interval between wmin and wmax.

• If w is a vector of frequencies, then musynperf computes the H∞ performance at the specified
frequencies only.
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[gamma,wcu] = musynperf( ___ ,opts) specifies additional options for the computation. Use
robOptions to create opts. You can use this syntax with any of the previous input-argument
combinations.

[gamma,wcu,info] = musynperf( ___ ) returns a structure with additional information about the
H∞ performance values and the perturbations that drive the I/O gain to γ. See info for details about
this structure. You can use this syntax with any of the previous input-argument combinations.

Examples

Reduce Synthesized Controller While Preserving Robust Performance

When you use musyn to synthesize an unstructured robust controller, the resulting controller often is
of higher order than is necessary to achieve the desired robust performance. One way to mitigate this
problem is to perform model reduction, using musynperf to test the robust performance of the
reduced-order controller.

Create an uncertain model of the control system described in the example "Robust Tuning of Fixed-
Structure Controller" on the musyn reference page.

G = tf(1,[1 -1]);
Wu = 0.25*tf([1/2 1],[1/32 1]); 
InputUnc = ultidyn('InputUnc',[1 1]);
Gpert = G*(1+InputUnc*Wu);
Gpert.InputName = 'u';
Gpert.OutputName = 'y1';

Wp = makeweight(100,[1 0.5],0.25);
Wp.InputName = 'y';
Wp.OutputName = 'e';

SumD = sumblk('y = y1 + d');
inputs = {'d','u'};
outputs = {'e','y'};
P = connect(Gpert,Wp,SumD,inputs,outputs); 

[K,CLperf] = musyn(P,1,1); 

D-K ITERATION SUMMARY:
-----------------------------------------------------------------
                       Robust performance               Fit order
-----------------------------------------------------------------
  Iter         K Step       Peak MU       D Fit             D
    1           1.345        1.344         1.36             8
    2          0.7923       0.7904       0.7962             4
    3          0.6789       0.6789       0.6857            10
    4          0.6572       0.6572       0.6598             8
    5          0.6538       0.6538       0.6542             8
    6          0.6532       0.6532       0.6533             8

Best achieved robust performance: 0.653

N = order(K)

N = 11
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musyn returns an 11th-order controller and the robust H∞ performance CLperf of the closed-loop
system using that controller. The best achieved robust performance of about 0.65 is good, but the
controller order is high. Compute reduced-order controllers for orders ranging from 1 to full order.

Kred = reduce(K,1:N);

Find the lowest-order controller Klow with performance no worse than 1.05*CLperf, or 5%
degradation compared to the full-order controller.

for k=1:N
   Klow = Kred(:,:,k);
   CL = lft(P,Klow);
   [gamma,~] = musynperf(CL);
   if gamma.UpperBound < 1.05*CLperf
      break
   end
end 
order(Klow)

ans = 4

To validate the reduced-order controller, examine the robust H∞ performance of the system using the
simplified controller with that of the system using the full-order controller.

CLPlow = lft(P,Klow);
[gammalow,~] = musynperf(CLPlow);
gammalow.UpperBound

ans = 0.6613

The fourth-order controller achieves very similar robust H∞ performance to the 11th-order controller
returned by musyn.

Input Arguments
clp — Closed-loop uncertain system
uss | ufrd | genss | genfrd

Closed-loop uncertain system, specified as a uss, ufrd, genss, or genfrd model that contains
uncertain elements. For genss or genfrd models, musynperf uses the current value of any tunable
blocks and folds them into the known (not uncertain) part of the model.

w — Frequencies
{wmin,wmax} | vector

Frequencies at which to compute robust H∞ performance, specified as the cell array {wmin,wmax} or
as a vector of frequency values.

• If w is a cell array of the form {wmin,wmax}, then the function computes the H∞ performance at
frequencies ranging between wmin and wmax.

• If w is a vector of frequencies, then the function computes the H∞ performance at each specified
frequency. For example, use logspace to generate a row vector with logarithmically spaced
frequency values.
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Specify frequencies in units of rad/TimeUnit, where TimeUnit is the TimeUnit property of the
model.

opts — Options for H∞ performance computation
robOptions object

Options for computation of robust H∞ performance, specified as robOptions object. Use
robOptions to create the options object. The available options include settings that let you:

• Extract frequency-dependent H∞ performance values.
• Examine the sensitivity of the H∞ performance to each uncertain element.
• Improve the results of the calculation by setting certain options for the underlying mussv

calculation. In particular, setting the option 'MussvOptions' to 'mN' can reduce the gap
between the lower bound and upper bound. N is the number of restarts.

For more information about all available options, see robOptions.
Example: robOptions('Sensitivity','on','MussvOptions','m3')

Output Arguments
gamma — Robust H∞ performance and critical frequency
structure

Robust H∞ performance and critical frequency, returned as a structure containing the following fields:

Field Description
LowerBound Lower bound on the actual robust H∞ performance γ,

returned as a scalar value. The exact value of γ is
guaranteed to be no smaller than LowerBound. In other
words, some uncertain-element values of magnitude 1/
LowerBound exist for which the I/O gain of clp reaches
LowerBound. The function returns one such instance in
wcu.

UpperBound Upper bound on the actual robust H∞ performance,
returned as a scalar value. The exact value is guaranteed
to be no larger than UpperBound. In other words, for all
modeled uncertainty with normalized magnitude up to 1/
UpperBound, the peak I/O gain of clp is less than
UpperBound.

CriticalFrequency Frequency at which the I/O gain reaches LowerBound, in
rad/TimeUnit, where TimeUnit is the TimeUnit
property of clp.

Use uscale or normalized2actual to convert the normalized uncertainty values 1/LowerBound or
1/UpperBound to actual deviations from nominal values.

wcu — Perturbations driving I/O gain to gamma.LowerBound
structure

Perturbations driving I/O gain to gamma.LowerBound, returned as a structure whose fields are the
names of the uncertain elements of clp. Each field contains the actual value of the corresponding
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uncertain element. For example, if clp includes an uncertain matrix M and SISO uncertain dynamics
delta, then wcu.M is a numeric matrix and wcu.delta is a SISO state-space model.

Use usubs(clp,wcu) to substitute these values for the uncertain elements in clp and obtain the
corresponding dynamic system. This system has a peak gain of gamma.LowerBound.

Use actual2normalized to convert these actual uncertainty values to the normalized units in
which 1/gamma.LowerBound or 1/gamma.UpperBound are expressed.

info — Additional information about γ values
structure

Additional information about the γ values, returned as a structure with the following fields.

Field Description
Frequency Frequency points at which musynperf returns γ values,

returned as a vector.

• If the 'VaryFrequency' option of robOptions is
'off', then info.Frequency is the critical frequency,
the frequency at which the I/O gain reaches
gamma.LowerBound. If the smallest lower bound and
the smallest upper bound on γ occur at different
frequencies, then info.Frequency is a vector
containing these two frequencies.

• If the 'VaryFrequency' option of robOptions is
'on', then info.Frequency contains the frequencies
selected by musynperf. These frequencies are
guaranteed to include the frequency at which the peak
gain occurs.

• If you specify a vector of frequencies w at which to
compute γ, then info.Frequency = w. When you
specify a frequency vector, these frequencies are not
guaranteed to include the frequency at which the peak
gain occurs.

The 'VaryFrequency' option is meaningful only for uss
and genss models. musynperf ignores the option for ufrd
and genfrd models.

Bounds Lower and upper bounds on the actual γ values, returned as
an array. info.Bounds(:,1) contains the lower bound at
each corresponding frequency in info.Frequency, and
info.Bounds(:,2) contains the corresponding upper
bounds.
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Field Description
WorstPerturbation Smallest perturbations at each frequency point in

info.Frequency, returned as a structure array. The fields
of info.WorstPerturbation are the names of the
uncertain elements in clp. Each field contains the value of
the corresponding element that drives the I/O gain to the
corresponding lower bound at each frequency. For example,
if clp includes an uncertain parameter p and SISO
uncertain dynamics delta, then
info.WorstPerturbation.p is a collection of numeric
values and info.WorstPerturbation.delta is a
collection of SISO state-space models.

Sensitivity Sensitivity of γ to each uncertain element, returned as a
structure when the 'Sensitivity' option of robOptions
is 'on'. The fields of info.Sensitivity are the names of
the uncertain elements in clp. Each field contains a
percentage that measures how much the uncertainty in the
corresponding element affects γ. For example, if
info.Sensitivity.p is 50, then a given fractional
change in the uncertainty range of p causes half as much
fractional change in γ.

If the 'Sensitivity' option of robOptions is 'off'
(the default setting), then info.Sensitivity is NaN.

See Also
musyn | robgain | robOptions | robstab | normalized2actual | actual2normalized | wcgain
| uscale

Topics
“Robust Performance Measure for Mu Synthesis”

Introduced in R2019b
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ncfmargin
Calculate normalized coprime stability margin of plant-controller feedback loop

Syntax
[marg,freq] = ncfmargin(P,C)
[marg,freq] = ncfmargin(P,C,sign)
[marg,freq] = ncfmargin( ___ ,tol)

Description
[marg,freq] = ncfmargin(P,C) returns the normalized coprime stability margin of the
multivariable feedback loop consisting of a controller C in negative feedback with a plant P:

The normalized coprime robust stability margin (also called the gap metric stability margin) is an
indication of robustness to unstructured perturbations. Values greater than 0.3 generally indicate
good robustness margins.

[marg,freq] = ncfmargin(P,C,sign) specifies the sign of the feedback connection assumed for
the margin calculation. By default, sign = -1. Set sign = +1 for positive-feedback
interconnection.

[marg,freq] = ncfmargin( ___ ,tol) calculates the normalized coprime factor metric with the
specified relative accuracy.

Examples

Normalized Coprime Stability Margin

Consider an unstable first-order plant, p, stabilized by high-gain and low-gain controllers, cL and cH.

p = tf(4,[1 -0.001]);     
cL = 1;                
cH = 10;

Compute the stability margin of the closed-loop system with the low-gain controller.

[margL,~] = ncfmargin(p,cL)

margL = 0.7069

Similarly, compute the stability margin of the closed-loop system with the high-gain controller.

[margH,~] = ncfmargin(p,cH)
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margH = 0.0995

The closed-loop systems with low-gain and high-gain controllers have normalized coprime stability
margins of about 0.71 and 0.1, respectively. This result indicates that the closed-loop system with
low-gain controller is more robust to unstructured perturbations than the system with the high-gain
controller.

To observe this difference in robustness, construct an uncertain plant, punc, that has additional
unmodeled dynamics at high frequency compared to the nominal plant.

punc = p + ultidyn('uncstruc',[1 1],'Bound',1);
sigma(p,punc,'r--')

Calculate the robust stability of the closed-loop systems formed by the uncertain plant and each
controller.

[stabmargL,~] = robstab(feedback(punc,cL))

stabmargL = struct with fields:
           LowerBound: 0.9980
           UpperBound: 1
    CriticalFrequency: Inf

[stabmargH,~] = robstab(feedback(punc,cH))

stabmargH = struct with fields:
           LowerBound: 0.0998
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           UpperBound: 0.1000
    CriticalFrequency: Inf

As expected, the robust stability analysis shows that the closed-loop system with low-gain controller
is more robustly stable in the presence of the unmodeled LTI dynamics. In fact, this closed-loop
system can tolerate almost 100% of the specified uncertainty. In contrast, closed-loop system with the
high-gain controller can tolerate only about 10% of the specified uncertainty.

Compute Gap Metric and Stability Margin

Consider a plant and a stabilizing controller.

P1 = tf([1 2],[1 5 10]);
C = tf(4.4,[1 0]);

Compute the stability margin for this plant and controller.

b1 = ncfmargin(P1,C)

b1 = 0.1961

Next, compute the gap between P1 and the perturbed plant, P2.

P2 = tf([1 1],[1 3 10]);
[gap,nugap] = gapmetric(P1,P2)

gap = 0.1391

nugap = 0.1390

Because the stability margin b1 = b(P1,C) is greater than the gap between the two plants, C also
stabilizes P2. As discussed in “Gap Metrics and Stability Margins” on page 1-134, the stability margin
b2 = b(P2,C) satisfies the inequality asin(b(P2,C)) ≥ asin(b1)-asin(gap). Confirm this
result.

b2 = ncfmargin(P2,C);
[asin(b2) asin(b1)-asin(gap)]

ans = 1×2

    0.0997    0.0579

Input Arguments
P — Plant
dynamic system model

Plant, specified as a dynamic system model. P can be SISO or MIMO, as long as P*C has the same
number of inputs and outputs. P can be continuous time or discrete time. If P is a generalized state-
space model (genss or uss) then ncfmargin uses the current or nominal value of all control design
blocks in P.
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C — Controller
dynamic system model

Plant, specified as a dynamic system model. C can be SISO or MIMO, as long as P*C has the same
number of inputs and outputs. C can be continuous time or discrete time. If C is a generalized state-
space model (genss or uss) then ncfmargin uses the current or nominal value of all control design
blocks in P.

By default, ncfmargin assumes a negative-feedback interconnection between P and C. To compute
the margins for a closed-loop system with positive feedback, use [marg,freq] = ncfmargin(P,C,
+1).

sign — Sign of feedback
-1 (default) | +1

Sign of the feedback connection, specified as either -1 or +1.

The default value, sign = -1, specifies negative feedback. Setting sign = +1 assumes a positive
feedback connection for the margin calculation, as in the following diagram.

tol — Relative accuracy
0.001 (default) | positive scalar less than 1

Relative accuracy for the computed margin, specified as a positive scalar value less than 1. The
default value is 0.001, or 0.1% accuracy.

Output Arguments
marg — Normalized coprime robust stability margin
scalar in [0,1]

Normalized coprime robust stability margin, returned as a scalar in the range [0,1]. This quantity,
also known as the gap metric stability margin, is an indicator of closed-loop robustness to
unstructured perturbations. For negative-feedback control architecture, It is defined as:

b(P, C) =
I
C

(I + PC)−1 I P
∞

−1
=

I
P

(I + CP)−1 I C
∞

−1
.

Values greater than 0.3 generally indicate good robustness margins. If the closed-loop system is
unstable, then marg = 0. The quantity b(P,C)–1 is the signal gain from disturbances on the plant input
and output to the input and output of the controller.

freq — Frequency at which margin occurs
scalar | NaN

Frequency at which the margin marg occurs, returned as a scalar. If the closed-loop system is
unstable, then freq = NaN.
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More About
Stability Margin and Gap Metrics

The stability margin b(P,C) is related to the gap metric, which gives a numerical value δ(P1,P2) for the
distance between two LTI systems (see gapmetric).

For both the gap and ν-gap metrics, the following robust performance result holds:
arcsin b(P2,C2) ≥ arcsin b(P1,C1) – arcsin δ(P1,P2) – arcsin δ(C1,C2),

To interpret this result, suppose that a nominal plant P1 is stabilized by controller C1 with stability
margin b(P1,C1). Then, if P1 is perturbed to P2 and C1 is perturbed to C2, the stability margin is
degraded by no more than the above formula.

The ν-gap is always less than or equal to the gap, so its predictions using the above robustness result
are tighter.

Tips
• While ncfmargin assumes a negative-feedback loop, the ncfsyn command designs a controller

for a positive-feedback loop. Therefore, to compute the margin using a controller designed with
ncfsyn, use [marg,freq] = ncfmargin(P,C,+1).

Algorithms
The computation of the normalized coprime stability margin is as described in Chapter 16 of [1].

References
[1] Zhou, K., Doyle, J.C., Essentials of Robust Control. London, UK: Pearson, 1997.

See Also
ncfsyn | robstab | diskmargin | gapmetric | wcdiskmargin

Introduced before R2006a
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ncfmr
Model reduction from normalized coprime factorization

Syntax
[Gred,info] = ncfmr(G,ord)
[~,info] = ncfmr(G)
Gred = ncfmr(G,ord,info)
ncfmr(G)

Description
ncfmr computes a reduced-order approximation of a model by truncating modes in a coprime
factorization of the full-order model. This method is related to the balanced truncation method of
balred, but it is particularly well-suited to controller order reduction. For a stabilizing controller, the
reduced controller is also stabilizing as long as the approximation error is smaller than the
robustness margin computed by ncfmargin.

[Gred,info] = ncfmr(G,ord) computes a reduced-order approximation of the dynamic system
model G. Specify the desired reduction order as ord. If ord is a vector, then Gred is an array of
approximations of the corresponding order. The structure info contains information about the
computation such as bounds on the approximation error.

[~,info] = ncfmr(G) computes the coprime factorization of G given by [M,N] such that G = M\N
(see lncf), the Hankel singular values of the factorization, and the error bounds. You can use this
information to determine the target reduction order programmatically based on desired fidelity or
robust stability considerations. Then, use the syntax Gred = ncfmr(G,ord,info) to compute the
reduced-order model.

Gred = ncfmr(G,ord,info) computes the reduced-order approximation using the normalized
coprime factorization and Hankel singular values that you provide in info. Obtain info using the
previous syntax, [~,info] = ncfmr(G). Providing a previously computed info to ncfmr allows
you to perform model reduction without having to recompute the factorization and Hankel singular
values. This syntax is therefore particularly useful when performance is a concern.

ncfmr(G) plots the Hankel singular values and bounds on the approximation error corresponding to
each order. Examine the plot to determine a reduced order based on desired fidelity or robust
stability considerations. You can then use Gred = ncfmr(G,ord) to compute the reduced-order
model.

Examples

Reduce Model Order

ncfmr computes Hankel singular values and approximation errors to help you select a suitable target
reduction order. One way to do so is to examine a plot of these values. Load the 30-state plant model
G.
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load("ncfmrModel.mat","G")
size(G)

State-space model with 2 outputs, 3 inputs, and 30 states.

Call ncfmr without an output argument. The function generates a Hankel singular value plot, which
shows the relative energy contributions of each state in the coprime factorization of G, arranged in
decreasing order by energy. The plot also shows the upper bound on the error between the original
and reduced-order models that you obtain by truncating the states at that point. Examine this plot to
choose the target order. For instance, for a maximum error of 0.01, you can reduce the model to 13th
order.

ncfmr(G)

Call ncfmr again with an output argument and using order = 13. Doing so computes the reduced
model Gred. Examine the singular values of G and of the difference between G and Gred. The
difference is very small across all frequencies, showing that the reduced-order model is a good
approximation of the full-order model.

Gred = ncfmr(G,13);
sigma(G,G-Gred)
legend("G","G-Gred")
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Reduce Controller Order While Preserving Stability and Robustness

When you use ncfmr to reduce a plant G or controller K for which the closed-loop response
feedback(G*K,eye(n)) is stable, the resulting closed-loop response is also stable as long as the
approximation error of the reduced model does not exceed the robustness margin computed by
ncfmargin. To see this benefit of ncfmr, load a plant G and design a controller for it. For this
example, use ncfsyn to design the controller.

load ncfmrStability.mat G
size(G)

State-space model with 1 outputs, 1 inputs, and 3 states.

% shaping weights
s = tf('s');
W1 = 3.35*tf([1 20.89],[1 0]);
W2 = 1;
% controller
[K,~,~,Kinfo] = ncfsyn(G,W1,W2); 
size(K)

State-space model with 1 outputs, 1 inputs, and 5 states.
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ncfsyn designs a controller by optimizing the ncfmargin robustness margin using a plant shaped
by weighting functions W1 and W2 (see ncfsyn). To analyze margins with ncfmargin and reduce
controller order with ncfmr, work with the shaped plant Gs and the controller Ks designed for it.

Gs = Kinfo.Gs;
Ks = Kinfo.Ks;

Use ncfmargin to find the robustness margin of the system with the full-order controller. ncfsyn
assumes a positive feedback loop while ncfmargin assumes negative feedback, so reverse the sign
of the controller for this computation.

emax = ncfmargin(Gs,-Ks)

emax = 0.1956

As long as the approximation error of the reduced-order controller does not exceed emax, stability of
the closed-loop system is preserved. Suppose that you can tolerate up to a 50% reduction in this
margin in exchange for the computational benefit of a lower order controller. To select the reduced
order, first compute the errors associated with each target order. ncfmr returns these values in the
ErrorBound field of the info argument. Then find the index of the last entry in info.ErrorBound
that exceeds the target error of emax/2.

[~,info] = ncfmr(Ks);
r = find(info.ErrorBound>emax/2,1,'last')

r = 3

Thus, you can approximate the original controller by only three states without too much loss of
stability. To avoid recomputing the Hankel singular values of Ks, use info as an input argument to
ncfmr.

Ksr = ncfmr(Ks,r,info);
size(Ksr)

State-space model with 1 outputs, 1 inputs, and 3 states.

The reduced-order controller yields a very similar stability margin to the original controller.

ncfmargin(Gs,-Ksr)

ans = 0.1949

Reducing the controller order further leads to additional reduction in the stability margin. Reducing
too far can lead to loss of closed-loop stability. For instance, try reducing to first order.

Ksru = ncfmr(Ks,1,info);
ncfmargin(Gs,-Ksru)

ans = 0

Thus, for further analysis or implementation, use the third-order controller. To do so, convert Ksr, the
reduced controller for Gs, into Kr, the reduced controller for G.

Kr = W1*Ksr*W2;

To confirm that this controller is satisfactory, compare the closed-loop response to the response with
the full-order controller. Again, reverse the sign of the controller to account for ncfsyn assuming
positive feedback.
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CL = feedback(-G*K,1);
CLr = feedback(-G*Kr,1);
step(CL,CLr)
legend

The large overshoot in this case is due to instability of the original plant G.

Compute Multiple Reduced-Order Models

ncfmr can compute multiple reduced-order models at once and return them in a model array. This
can be useful, for example, when you want to test a controller design with multiple approximations to
choose the one that yields the best balance between accuracy and computational efficiency. To
compute multiple models, provide a vector of target reduction orders instead of a single value for
order.

Load the 30-state plant model G. Compute five approximations of orders 11−15.

load("ncfmrModel.mat","G")
orders = 11:15;
Gred = ncfmr(G,orders);
size(Gred)

5x1 array of state-space models.
Each model has 2 outputs, 3 inputs, and between 11 and 15 states.

 ncfmr

1-387



Gred is an array of reduced-order state-space (ss) models. You can use the SamplingGrid property
of ss to associate each entry in the array with its corresponding model order.

Gred.SamplingGrid = struct('order',orders);

Assigning SamplingGrid can be useful for keeping track of the entries in a model array. For
instance, if you plot the frequency response of Gred in a MATLAB® figure, clicking one of the
resulting responses creates a tooltip that includes information drawn from SamplingGrid.

Input Arguments
G — Model to reduce
dynamic system model

Model to reduce, specified as a dynamic system model such as a state-space (ss) model. G can be
stable or unstable. If G is a generalized state-space model with uncertain or tunable control design
blocks, then the function uses the nominal or current value of those elements. sys cannot be an frd
model or a model with time delays.

ord — Reduction order
positive integer | vector of positive integers

Reduction order, specified as a positive integer or a vector of positive integers. If ord is a scalar,
ncfmr returns the model Gred of that order. If ord is a vector, then Gred is an array of models
reduced to the corresponding orders.

To determine ord, you can use one of two methods:

• Use the syntax ncfmr(G) to obtain a plot of Hankel singular values and bounds on approximation
errors at each order. Examine the plot to choose a reduction order with a tolerable approximation
error. For an example, see “Reduce Model Order” on page 1-383.

• Use the syntax [~,info] = ncfmr(G) to obtain the info structure. Programmatically examine
the approximation error bounds in info.ErrorBounds to choose a reduction order. For an
example, see “Reduce Controller Order While Preserving Stability and Robustness” on page 1-385.

If G has unstable states, then ord must be at least the number of unstable states.

Output Arguments
Gred — Reduced-order model
ss model

Reduced-order model, returned as a state-space (ss) model. If ord is a scalar, then Gred is a single
model of order ord. If ord is a vector, then Gred is an array of ss models of corresponding orders.

info — Information about model-reduction calculation
structure

Information about model-reduction calculation, returned as a structure with the following fields.

• GL — Left normalized coprime factorization of G, returned as a state-space (ss) model. This
factorization is given by GL = lncf(G). For more information, see lncf.
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• HSV — Hankel singular values of GL, returned as a vector whose length is the number of states in
G. These values indicate the relative energy contribution of each state. You can choose a target
reduction order by examining these values and choosing a number of states after which the
energy contribution drops off significantly.

• ErrorBound — Upper bound on approximation errors, returned as a vector. The approximation
error is given by Mr, Nr − M, N ∞, where [M,N] = lncf(G) and [Mr,Nr] = lncf(Gred). (For
more information about these expressions, see lncf.) Each entry info.ErrorBound(j) is the
maximum approximation error associated with reducing to j states. Thus, for instance, if you want
an approximation error of no more than 0.01, examine info.ErrorBound to find the index of the
first entry that is less than 0.01. Use that index as ord.

Tips
• You can use ncfmr to reduce the plant G or controller K while preserving closed-loop stability of

the following SISO or MIMO feedback loop.

Stability of this loop is preserved as long as the approximation error of the reduced plant is
smaller than the robustness margin for this loop given by ncfmargin(G,K).

For controllers computed with ncfsyn, reducing the controller Ks that ncfsyn computes for the
shaped controller Gs is preferable. Both Ks and Gs are returned by ncfsyn in the info output
argument. You can then compute Kr, the reduced controller for the original plant G, from Kr =
W1KsrW2, where W1 and W2 are the shaping weights used with ncfsyn. For an example, see
“Reduce Controller Order While Preserving Stability and Robustness” on page 1-385.

For controllers obtained by other techniques, reduction with ncfmr also preserves stability if the
error does not exceed the ncfmargin margin. However, such reduction can partially remove
integral action and introduce steady-state tracking errors. Therefore, removing any integrator
terms from the controller before reduction with ncfmr and replacing them in the reduced
controller is recommended.

Algorithms
ncfmr performs the following steps to reduce the input model G to the desired order k.

1 Find the left normalized coprime factorization [M,N] of G, where G = M\N (see lncf).
2 Obtain the kth-order approximation [Mr,Nr] of [M,N], using balanced model truncation with

absolute error control (see balred).
3 Set Gred = Mr\Nr.

Compatibility Considerations
Syntax and output change
Behavior changed in R2021b

 ncfmr

1-389



The behavior of ncfmr changed in R2021b to bring it in line with balred and to allow fully
programmatic selection of the reduced-model order. As a result, some syntaxes and output arguments
have changed, and some options are no longer recommended.

Prior to R2021b, calling ncfmr(G) without a specified reduction order invoked an interactive
workflow that prompted you to enter the desired order. As of R2021b, this syntax displays a plot but
no longer prompts for the desired order. Instead, call ncfmr again using the ord input argument to
specify the desired order. The following table further describes this change in the interactive
workflow.

Interactive Workflow Before R2021b Interactive Workflow in R2021b
1 Enter Gred = ncfmr(G). The software

produces a Hankel singular-value plot and
prompts you to enter the desired reduction
order.

2 Examine the plot to determine the desired
order based on the Hankel singular values.

3 Enter the desired order. The software
computes the reduced-order model Gred.

1 Enter ncfmr(G) without an output
argument. The software produces a Hankel
singular-value plot that also shows the
approximation error of truncation at each
mode.

2 Examine the plot to determine the desired
order based on the Hankel singular values or
the approximation error.

3 Call ncfmr again by entering Gred =
ncfmr(G,ord). The software computes the
reduced-order model Gred.

The fields of the info output argument have also changed in R2021b. The following table
summarizes these changes.

info Fields Before R2021b info Fields in R2021b
• info.GL — Left normalized coprime

factorization
• info.GR — Right normalized coprime

factorization
• info.hsv — Hankel singular values

• info.GL — Left normalized coprime
factorization

• info.HSV — Hankel singular values of
info.GL

• info.ErrorBound — Bound on
approximation error

Additionally, the 'MaxError' and 'Display' options are not recommended. Instead:

• To display a plot of the Hankel singular values of a dynamic system model G, call nfcmr(G)
without an output argument. This command generates a singular-value plot that also displays the
approximation error of truncation at each mode.

• To select a model order based on the approximation error, examine the plot. Or, call [~,info] =
ncfmr(G) and use the information in info.ErrorBound.

See Also
balred | bstmr | hankelsv | lncf | ncfsyn | ncfmargin

Topics
“Hankel Singular Values”

Introduced before R2006a
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ncfsyn
Loop shaping design using Glover-McFarlane method

Syntax
[K,CL,gamma,info] = ncfsyn(G)
[K,CL,gamma,info] = ncfsyn(G,W1)
[K,CL,gamma,info] = ncfsyn(G,W1,W2)
[K,CL,gamma,info] = ncfsyn(G,W1,W2,tol)

Description
ncfsyn implements a method for designing controllers that uses a combination of loop shaping and
robust stabilization as proposed in [1]-[2]. The function computes the Glover-McFarlane H∞
normalized coprime factor loop-shaping controller K for a plant G with pre-compensator and post-
compensator weights W1 and W2. The function assumes the positive feedback configuration of the
following illustration.

To specify negative feedback, replace G by –G. The controller Ks stabilizes a family of systems given
by a ball of uncertainty in the normalized coprime factors of the shaped plant Gs = W2GW1. The final
controller K returned by ncfsyn is obtained as K = W1KsW2.

[K,CL,gamma,info] = ncfsyn(G) computes the Glover-McFarlane H∞ normalized coprime factor
loop-shaping controller K for the plant G, with W1 = W2 = I. CL is the closed-loop system from the
disturbances w1 and w2 to the outputs z1 and z2. The function also returns the H∞ performance
gamma, and a structure containing additional information about the result.

[K,CL,gamma,info] = ncfsyn(G,W1) computes the controller using the pre-compensator weight
you specify in W1, with W2 = I.

[K,CL,gamma,info] = ncfsyn(G,W1,W2) computes the controller using the specified pre-
compensator weight W1 and post-compensator weight W2.
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[K,CL,gamma,info] = ncfsyn(G,W1,W2,tol) specifies how tightly the performance gamma of
the synthesized controller approximates the optimal achievable performance gopt. Increasing tol
can help when the controller K has undesirable fast dynamics.

Examples

Loop Shaping with ncfsyn

Use ncfsyn to design a controller for the following plant.

G = tf([1 5],[1 2 10]);

Use weighting functions that yield a shaped plant W1*G*W2 with high gain for disturbance
attenuation below 0.1 rad/s, and low gain for good robust stability above about 5 rad/s. For this G, a
pre-compensator weight alone is sufficient.

W1 = tf(1,[1 0]);
bodemag(W1*G)
grid

Compute the controller.

[K,CL,gamma,info] = ncfsyn(G,W1);

1 Functions

1-392



The optimal cost gamma is related to the normalized coprime stability margin of the system by 1/
gamma = ncfmargin(Gs,-Ks). (The minus sign is needed because ncfmargin assumes a negative-
feedback loop, while ncfsyn computes a positive-feedback controller.)

b = ncfmargin(info.Gs,-info.Ks);
[gamma 1/b]

ans = 1×2

    1.4521    1.4521

Compare the achieved and target loop shapes.

sigma(G*K,G*W1)
legend('achieved','target')

Reduce Undesirable Fast Dynamics in Controller

In the controller returned by ncfsyn, some controller poles can become infinitely fast as the actual
performance gamma approaches the optimal achievable performance gopt. To prevent this, check the
controller poles and increase the tol argument if some poles are undesirably fast. tol sets how
closely gamma of the synthesized controller approximates gopt.

Load G, a fourth-order plant.

 ncfsyn

1-393



load("ncfsynTolPlant.mat")
bode(G)

Use a weighting function that yields a shaped plant W1*G with high gain for disturbance attenuation
below about 10 rad/s, and low gain for good robust stability above about 1000 rad/s.

W1 = zpk(-130,0,0.6);
bode(W1*G)
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Design a controller using the default tolerance, tol = 1e-3. Examine the poles of the resulting
controller.

[K1,~,gamma1,info1] = ncfsyn(G,W1);
damp(K1)

                                                                       
         Pole              Damping       Frequency      Time Constant  
                                       (rad/seconds)      (seconds)    
                                                                       
  0.00e+00                -1.00e+00       0.00e+00              Inf    
 -1.48e+02 + 1.60e+01i     9.94e-01       1.49e+02         6.76e-03    
 -1.48e+02 - 1.60e+01i     9.94e-01       1.49e+02         6.76e-03    
 -7.90e+02 + 8.01e+02i     7.02e-01       1.13e+03         1.27e-03    
 -7.90e+02 - 8.01e+02i     7.02e-01       1.13e+03         1.27e-03    
 -1.50e+05                 1.00e+00       1.50e+05         6.66e-06    

This controller has a pole at around 150000 rad/s, much faster than any other dynamics in the
controller. To reduce the frequency of this pole, try increasing the tolerance to 0.1.

tol = 0.1;
[K2,~,gamma2,info2] = ncfsyn(G,W1,[],tol);
damp(K2)

                                                                       
         Pole              Damping       Frequency      Time Constant  
                                       (rad/seconds)      (seconds)    
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  0.00e+00                -1.00e+00       0.00e+00              Inf    
 -1.50e+02 + 6.85e+00i     9.99e-01       1.50e+02         6.68e-03    
 -1.50e+02 - 6.85e+00i     9.99e-01       1.50e+02         6.68e-03    
 -6.58e+02 + 9.45e+02i     5.71e-01       1.15e+03         1.52e-03    
 -6.58e+02 - 9.45e+02i     5.71e-01       1.15e+03         1.52e-03    
 -1.77e+03                 1.00e+00       1.77e+03         5.65e-04    

This time the highest-frequency pole is closer to the others. Compare the resulting performance
values to confirm that the two controllers deliver similar performance.

gamma1, gamma2

gamma1 = 2.1157

gamma2 = 2.3250

Input Arguments
G — Plant
dynamic system model

Plant, specified as a dynamic system model such as a state-space (ss) model. If G is a generalized
state-space model with uncertain or tunable control design blocks, then ncfsyn uses the nominal or
current value of those elements. G must have the same number of inputs and outputs.

W1 — Pre-compensator weight
eye(N) (default) | LTI model

Pre-compensator weight, specified as:

• Identity matrix eye(N), where N is the number of inputs or outputs in G.
• SISO minimum-phase LTI model. In this case, ncfsyn uses the same weight for every loop

channel.
• MIMO minimum-phase LTI model of the same I/O dimensions as G.

Select pre-compensator and post-compensator weights W1 and W2 such that the gain of the shaped
plant Gs = W2GW1 is sufficiently high at frequencies where good disturbance attenuation is required,
and sufficiently low at frequencies where good robust stability is required.

W2 — Post-compensator weight
eye(N) (default) | LTI model

Post-compensator weight, specified as the identity matrix eye(N) or a SISO or MIMO LTI model. The
considerations for specifying W2 are the same as those for W1. To omit the post-compensator weight,
set W2 = [].

tol — Near-optimality tolerance
0.001 (default) | positive scalar

Near-optimality tolerance, specified as a positive scalar value. ncfsyn returns a controller K with
performance gamma that satisfies abs(gamma-gopt) < tol*gopt, where gopt is the optimal
performance (returned in info). Use tol to adjust the acceptable gap between gamma and gopt. A
tol value that is too small can cause numerical difficulties and introduce fast poles in K. Increasing
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tol usually eliminates both issues. For an example, see “Reduce Undesirable Fast Dynamics in
Controller” on page 1-393.

Output Arguments
K — H∞-optimal loop-shaping controller
state-space (ss) model

H∞-optimal loop-shaping controller, returned as a state-space (ss) model with the same I/O
dimensions as G. The optimal controller K = W1KsW2. See “Algorithms” on page 1-398.

CL — Optimal closed-loop system
state-space (ss) model

Optimal closed-loop system from the disturbances w1 and w2 to the outputs z1 and z2, returned as a
state-space model. The closed-loop system is given by:

I
K

I − GK −1 I, G .

gamma — H∞ performance
positive scalar value

H∞ performance achieved with the controller K, returned as a positive scalar value greater than 1.
The H∞ performance is hinfnorm(CL). The optimal controller Ks is such that the singular-value plot
of the shaped loop Ls = W2GW1Ks optimally matches the target loop shape Gs to within a factor of
gamma. However, for numerical reasons, ncfsyn generally returns a controller with slightly larger H∞
performance than optimal. For the optimal achievable performance, see the info output argument.

gamma is related to the normalized coprime stability margin of the system by gamma = 1/
ncfmargin(Gs,-Ks). Thus, gamma gives a good indication of robustness of stability to a wide class
of unstructured plant variations, with values in the range 1 < gamma < 3 corresponding to
satisfactory stability margins for most typical control system designs.

info — Additional information
structure

Additional information about the controller synthesis, returned as a structure containing the
following fields.

• gopt — Optimal performance achievable by H∞ synthesis for the shaped plant. For numerical
reasons, ncfsyn generally returns a controller with slightly larger H∞ performance, which is
returned in gamma. To adjust how tightly ncfsyn aims to make gamma match gopt, use the tol
input argument. See “Reduce Undesirable Fast Dynamics in Controller” on page 1-393.

• emax — nugap robustness metric, emax = 1/gopt (see gapmetric)
• Gs — Shaped plant Gs = W2GW1

• Ks — Optimal controller for shaped plant Gs. The final controller is K = W1KsW2. See “Algorithms”
on page 1-398 for details.
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Tips
• While ncfmargin assumes a negative-feedback loop, the ncfsyn command designs a controller

for a positive-feedback loop. Therefore, to compute the margin using a controller designed with
ncfsyn, use [marg,freq] = ncfmargin(G,K,+1).

Algorithms
The returned controller K = W1KsW2, where Ks is an optimal H∞ controller that minimizes the H∞ cost

γ Ks =
I

Ks
(I − GsKs)−1[I, Gs]

∞
=

I
Gs

(I − KsGs)−1[I, Ks]
∞

.

The optimal performance is the minimal cost

γ: = min
Ks

γ Ks .

Suppose that Gs=NM–1, where N(jω)*N(jω) + M(jω)*M(jω) = I, is a normalized coprime factorization
(NCF) of the weighted plant model Gs. Then, theory ensures that the control system remains robustly
stable for any perturbation Gs to Gs of the form

Gs = (N + Δ1)(M + Δ2)−1

where Δ1, Δ2 are a stable pair satisfying

Δ1
Δ2 ∞

< MARG: = 1
γ .

The closed-loop H∞-norm objective has the standard signal gain interpretation. Finally it can be
shown that the controller, Ks, does not substantially affect the loop shape in frequencies where the
gain of W2GW1 is either high or low, and will guarantee satisfactory stability margins in the frequency
region of gain cross-over. In the regulator set-up, the final controller to be implemented is K=W1KsW2.

See McFarlane and Glover [1]–[2] for details.

Compatibility Considerations
Reference-command syntax not recommended
Not recommended starting in R2020b

The syntax ncfsyn(G,W1,W2,'ref') is not recommended.

References
[1] McFarlane, Duncan C., and Keith Glover, eds. Robust Controller Design using Normalized Coprime

Factor Plant Descriptions. Vol. 138. Lecture Notes in Control and Information Sciences.
Berlin/Heidelberg: Springer-Verlag, 1990. https://doi.org/10.1007/BFb0043199.

[2] McFarlane, D., and K. Glover, “A Loop Shaping Design Procedure using H∞ Synthesis,” IEEE
Transactions on Automatic Control, no. 6 (June 1992): pp. 759–69. https://doi.org/
10.1109/9.256330.
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[4] Zhou, Kemin, and John Comstock Doyle. Essentials of Robust Control. Upper Saddle River, NJ:
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See Also
gapmetric | hinfsyn | loopsyn | ncfmargin | ncfmr

Topics
“Loop Shaping Using the Glover-McFarlane Method”
“Robust Loop Shaping of Nanopositioning Control System”

Introduced before R2006a
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newlmi
Attach identifying tag to LMIs

Syntax
tag = newlmi

Description
newlmi adds a new LMI to the LMI system currently described and returns an identifier tag for this
LMI. This identifier can be used in lmiterm, showlmi, or dellmi commands to refer to the newly
declared LMI. Tagging LMIs is optional and only meant to facilitate code development and readability.

Identifiers can be given mnemonic names to help keep track of the various LMIs. Their value is
simply the ranking of each LMI in the system (in the order of declaration). They prove useful when
some LMIs are deleted from the LMI system. In such cases, the identifiers are the safest means of
referring to the remaining LMIs.

See Also
setlmis | lmivar | lmiterm | getlmis | lmiedit | dellmi

Introduced before R2006a
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normalized2actual
Convert value for atom in normalized coordinates to corresponding actual value

Syntax
avalue = normalized2actual(A,NV)

Description
Converts a normalized value NV of an atom to its corresponding actual (unnormalized) value.

If NV is an array of values, then avalue will be an array of the same dimension.

Examples
Create uncertain real parameters with a range that is symmetric about the nominal value, where
each endpoint is 1 unit from the nominal. Points that lie inside the range are less than 1 unit from the
nominal, while points that lie outside the range are greater than 1 unit from the nominal.

a = ureal('a',3,'range',[1 5]); 
actual2normalized(a,[1 3 5]) 
ans = 
   -1.0000   -0.0000    1.0000 
normalized2actual(a,[-1 1]) 
ans = 
   1.0000    5.0000 
normalized2actual(a,[-1.5 1.5]) 
ans = 
   0.0000    6.0000 

See Also
actual2normalized | robstab | robgain | getLimits | uscale

Introduced before R2006a
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plot
Visualize gain and phase uncertainty of a umargin block

Syntax
plot(ublk)

Description
plot(ublk) generates a two-axis plot visualizing the gain and phase uncertainty modeled by a
umargin block. The plot shows:

• The ranges of modeled gain and phase uncertainty. The plot shows the maximum gain-only
variation, the maximum phase-only variation, and a shaded region containing the simultaneous
gain and phase variations represented by ublk.

• The disk of values taken by the dynamic, multiplicative factor F(s) that models the gain and phase
uncertainty. For SISO loops, this factor changes the open-loop response L to L*F. For more
information about the disk model of uncertainty, see “Stability Analysis Using Disk Margins”.

Examples

Visualize Gain and Phase Variations and Uncertainty Disk of umargin Block

Create a umargin block that models gain that can decrease by 10% but increase by 60% in the
absence of phase variation, and a phase variation of ±15° in the absence of gain variation.

DGM = getDGM([0.9,1.6],[-15,15],'tight');
F = umargin('F',DGM)

F = 
  Uncertain gain/phase "F" with relative gain change in [0.86,1.6] and phase change of ±15 degrees.

Visualize the corresponding uncertainty disk and the ranges of gain and phase variations modeled by
F.

plot(F)
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The left-hand plot shows:

• The range of modeled gain variations, in the absence of phase variation. This range is shown along
the x-axis, given by DGM = [0.86 1.6], or about –1.3 dB to 4 dB.

• The range of modeled phase variations in the absence of gain variations. This value is shown along
the y-axis where the gain variation is 0 dB, or ±15°.

• A shaded region that shows the simultaneous gain and phase variations included in the model. For
instance, if the gain increases by about 1 dB, the phase can vary by as much as about ±17°.

The right-hand plot shows the disk of relative change in the open-loop response L. The umargin
block models gain and phase uncertainty as an arbitrary multiplicative factor F(s) whose Nyquist
curve lies entirely within this disk. The gain and phase uncertainty perturbs the open-loop response
L(s) to L(s)F(s). For more details about this uncertainty model, see umargin and “Stability Analysis
Using Disk Margins”.

Input Arguments
ublk — umargin block
umargin block

umargin block to visualize.
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See Also
umargin | diskmarginplot

Topics
“Stability Analysis Using Disk Margins”

Introduced in R2020a
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polydec
Compute polytopic coordinates with respect to box corners

Syntax
vertx = polydec(PV)

[C,vertx] = polydec(PV,P)

Description
vertx = polydec(PV) takes an uncertain parameter vector PV taking values ranging in a box, and
returns the corners or vertices of the box as columns of the matrix vertx.

[C,vertx] = polydec(PV,P) takes an uncertain parameter vector PV and a value P of the
parameter vector PV, and returns the convex decomposition C of P over the set VERTX of box corners:

P = c1*VERTX(:,1) + ... + cn*VERTX(:,n)
cj >=0 ,              c1 + ... + cn = 1

The list vertx of corners can be obtained directly by typing

vertx = polydec(PV)

See Also
pvec | aff2pol | hinfgs

Introduced before R2006a
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popov
Perform Popov robust stability test

Syntax
[t,P,S,N] = popov(sys,delta,flag)

Description
popov uses the Popov criterion to test the robust stability of dynamical systems with possibly
nonlinear and/or time-varying uncertainty. The uncertain system must be described as the
interconnection of a nominal LTI system sys and some uncertainty delta.

The command

[t,P,S,N] = popov(sys,delta)

tests the robust stability of this interconnection. Robust stability is guaranteed if t < 0. Then P
determines the quadratic part xTPx of the Lyapunov function and D and S are the Popov multipliers.

If the uncertainty delta contains real parameter blocks, the conservatism of the Popov criterion can
be reduced by first performing a simple loop transformation. To use this refined test, call popov with
the syntax

[t,P,S,N] = popov(sys,delta,1)  

Introduced before R2006a
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psys
Specify polytopic or parameter-dependent linear systems

Syntax
pols = psys(syslist)

affs = psys(pv,syslist)

Description
psys specifies state-space models where the state-space matrices can be uncertain, time-varying, or
parameter-dependent.

psys supports two types of uncertain state-space models:

• Polytopic systems

E(t) x˙ = A(t)x + B(t)u

y = C(t)x + D(t)u

whose SYSTEM matrix takes values in a fixed polytope:

A(t) + jE(t) B(t)
C(t) D(t)︷

S(t)

∈ Co
A1 + jE1 B1

C1 D1︷
S1

, …,
Ak + jEk Bk

Ck Dk︷
Sk

where S1, . . ., Sk are given “vertex” systems and

Co S1, ..., Sk = ∑
i = 1

k
αiSi:αi ≥ 0, ∑

i = 1

k
αi = 1

denotes the convex hull of S1, . . ., Sk (polytope of matrices with vertices S1, . . ., Sk)
• Affine parameter-dependent systems

E(p)x˙ = A(p)x + B(p)u

y = C(p)x + D(p)u

where A(· ); B(· ), . . ., E(· ) are fixed affine functions of some vector p = (p1, . . ., pn) of real
parameters, i.e.,

A(p) + jE(p) B(p)
C(p) D(p)︷

S(p)

=

A0 + jE0 B0
C0 D0︷

S0

+ p1
A1 + jE1 B1

C1 D1︷
S1

+ … + pn
An + jEn Bn

Cn Dn︷
Sn
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where S0, S1, . . ., Sn are given SYSTEM matrices. The parameters pi can be time-varying or
constant but uncertain.

The argument syslist lists the SYSTEM matrices Si characterizing the polytopic value set or
parameter dependence. In addition, the description pv of the parameter vector (range of values and
rate of variation) is required for affine parameter- dependent models (see pvec for details). Thus, a
polytopic model with vertex systems S1, . . ., S4 is created by

pols = psys([s1,s2,s3,s4])

while an affine parameter-dependent model with 4 real parameters is defined by

affs = psys(pv,[s0,s1,s2,s3,s4])

The output is a structured matrix storing all the relevant information.

See Also
pvec | aff2pol

Introduced before R2006a
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pvec
Specify range and rate of variation of uncertain or time-varying parameters

Syntax
pv = pvec('box',range,rates)

pv = pvec('pol',vertices)

Description
pvec is used in conjunction with psys to specify parameter-dependent systems. Such systems are
parametrized by a vector p = (p1, . . ., pn) of uncertain or time-varying real parameters pi. The
function pvec defines the range of values and the rates of variation of these parameters.

The type 'box' corresponds to independent parameters ranging in intervals

p j ≤ p j ≤ p j

The parameter vector p then takes values in a hyperrectangle of Rn called the parameter box. The
second argument range is an n-by-2 matrix that stacks up the extremal values p j and p j of each pj. If
the third argument rates is omitted, all parameters are assumed time-invariant. Otherwise, rates is

also an n-by-2 matrix and its j-th row specifies lower and upper bounds ν j and ν j on 
dp j
dt :

ν j ≤
dp j
dt ≤ ν j

Set ν j = –Inf and ν j = Inf if pj(t) can vary arbitrarily fast or discontinuously.

The type 'pol' corresponds to parameter vectors p ranging in a polytope of the parameter space Rn.
This polytope is defined by a set of vertices V1, . . ., Vn corresponding to “extremal” values of the
vector p. Such parameter vectors are declared by the command

pv = pvec('pol',[v1,v2, . . ., vn])

where the second argument is the concatenation of the vectors v1,...,vn.

The output argument pv is a structured matrix storing the parameter vector description. Use pvinfo
to read the contents of pv.

Examples
Consider a problem with two time-invariant parameters

p1 ∊ [–1, 2], p2 ∊ [20, 50]

The corresponding parameter vector p = (p1, p2) is specified by

pv = pvec('box',[-1 2;20 50])
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Alternatively, this vector can be regarded as taking values in the rectangle drawn in the following
figure. The four corners of this rectangle are the four vectors

v1 =
−1
20

,  v2 =
−1
50

,  v3 =
2
20

,  v4 =
2
50

Hence, you could also specify p by

pv = pvec('pol',[v1,v2,v3,v4])

Parameter box

See Also
pvinfo | psys

Introduced before R2006a
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pvinfo
Describe parameter vector specified with pvec

Syntax
[typ,k,nv] = pvinfo(pv)

[pmin,pmax,dpmin,dpmax] = pvinfo(pv,'par',j)

vj = pvinfo(pv,'par',j)

p = pvinfo(pv,'eval',c)

Description
pvinfo retrieves information about a vector p = (p1, . . ., pn) of real parameters declared with pvec
and stored in pv. The command pvinfo(pv) displays the type of parameter vector ('box' or
'pol'), the number n of scalar parameters, and for the type 'pol', the number of vertices used to
specify the parameter range.

For the type 'box':

[pmin,pmax,dpmin,dpmax] = pvinfo(pv,'par',j)

returns the bounds on the value and rate of variations of the j-th real parameter pj. Specifically,

pmin ≤ p j(t) ≤ pmax, dpmin ≤
dp j
dt ≤ dpmax

For the type 'pol':

pvinfo(pv,'par',j)

returns the j-th vertex of the polytope of Rn in which p ranges, while

pvinfo(pv,'eval',c)

returns the value of the parameter vector p given its barycentric coordinates c with respect to the
polytope vertices (V1, . . .,Vk). The vector c must be of length k and have nonnegative entries. The
corresponding value of p is then given by

p =
∑

i = 1

k
ciVi

∑
i = 1

k
ci

See Also
pvec | psys

Introduced before R2006a
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randatom
Generate random uncertain atom objects

Syntax
A = randatom(Type)

A = randatom(Type,sz)

A = randatom

Description
A = randatom(Type) generates a 1-by-1 type uncertain object. Valid values for Type include
'ureal', 'ultidyn', 'ucomplex', and 'ucomplexm'.

A = randatom(Type,sz) generates an sz(1)-by-sz(2) uncertain object. Valid values for Type
include 'ultidyn' or 'ucomplexm'. If Type is set to 'ureal' or 'ucomplex', the size variable is
ignored and A is a 1-by-1 uncertain object.

A = randatom, where randatom has no input arguments, results in a 1-by-1 uncertain object. The
class is of this object is randomly selected between 'ureal','ultidyn' and 'ucomplex'.

In general, both rand and randn are used internally. You can control the result of randatom by
setting seeds for both random number generators before calling the function.

Examples
The following statement creates the ureal uncertain object xr. Note that your display can differ
because a random seed is used.

xr = randatom('ureal') 

xr =

  Uncertain real parameter "NMGXC" with nominal value 5.34 and variability [-2.99,1.92].

The following statement creates the variable ultidyn uncertain object xlti with three inputs and
four outputs. You will get the results shown below if you set the random variable seed to 29.

rng(29,'twister');
xlti = randatom('ultidyn',[4 3]) 

xlti =

  Uncertain LTI dynamics "LOSWT" with 4 outputs, 3 inputs, and gain less than 0.293.

See Also
rand | randn | randumat | randuss | ucomplex | ucomplexm | ultidyn

Introduced before R2006a
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randumat
Generate random uncertain umat objects

Syntax
um = randumat(ny,nu)

um = randumat

Description
um = randumat(ny,nu) generates an uncertain matrix of size ny-by-nu. randumat randomly
selects from uncertain atoms of type 'ureal', 'ultidyn', and 'ucomplex'.

um = randumat results in a 1-by-1 umat uncertain object, including up to four uncertain objects.

Examples
The following statement creates the umat uncertain object x1 of size 2-by-3. Note that your result
can differ because a random seed is used.

x1 = randumat(2,3)

x1 =

  Uncertain matrix with 2 rows and 3 columns.
  The uncertainty consists of the following blocks:
    AWYRT: Uncertain real, nominal = 7.09, variability = [-7.84,16.4]%, 2 occurrences
    HRRED: Uncertain complex, nominal = 3.14+5.47i, radius = 1.92, 1 occurrences
    VSIYA: Uncertain real, nominal = -4.05, variability = [-1.53,3.83], 3 occurrences
    YZEZY: Uncertain complex, nominal = -6.54-2.17i, variability = 24%, 1 occurrences

Type "x1.NominalValue" to see the nominal value, "get(x1)" to see all properties, and 
"x1.Uncertainty" to interact with the uncertain elements.

The following statement creates the umat uncertain object x2 of size 4-by-2 with the seed 91.

rng(91,'twister');
x2 = randumat(4,2) 

x2 =

  Uncertain matrix with 4 rows and 2 columns.
  The uncertainty consists of the following blocks:
    YQZBI: Uncertain complex, nominal = 3.61+1.88i, radius = 1.42, 1 occurrences

Type "x2.NominalValue" to see the nominal value, "get(x2)" to see all properties, 
and "x2.Uncertainty" to interact with the uncertain elements.

See Also
rand | randn | randatom | randuss | ucomplex | ultidyn

Introduced before R2006a
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randuss
Generate stable, random uss objects

Syntax
usys = randuss(n)

usys = randuss(n,p)

usys = randuss(n,p,m)

usys = randuss(n,p,m,Ts)

usys = randuss

Description
usys = randuss(n) generates an nth order single-input/single-output uncertain continuous-time
system. randuss randomly selects from uncertain atoms of type 'ureal', 'ultidyn', and
'ucomplex'.

usys = randuss(n,p) generates an nth order single-input uncertain continuous-time system with
p outputs.

usys = randuss(n,p,m) generates an nth order uncertain continuous-time system with p outputs
and m inputs.

usys = randuss(n,p,m,Ts) generates an nth order uncertain discrete-time system with p outputs
and m inputs. The sample time is Ts.

usys = randuss (without arguments) results in a 1-by-1 uncertain continuous-time uss object with
up to four uncertain objects.

In general, both rand and randn are used internally. You can control the result of randuss by
setting seeds for both random number generators before calling the function.

Examples
The statement creates a fifth order, continuous-time uncertain system s1 of size 2-by-3. Note your
display can differ because a random seed is used.

s1 = randuss(5,2,3) 
USS: 5 States, 2 Outputs, 3 Inputs, Continuous System 
  CTPQV: 1x1 LTI, max. gain = 2.2, 1 occurrence                                 
  IGDHN: real, nominal = -4.03, variability = 
[-3.74667  22.7816]%, 1 occurrence 
  MLGCD: complex, nominal = 8.36+3.09i,  +/- 7.07%, 1 occurrence                
  OEDJK: complex, nominal = -0.346-0.296i, radius = 0.895,
1 occurrence         

See Also
rand | randn | randatom | randumat | ucomplex | ultidyn
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Introduced before R2006a
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reduce
Simplified access to Hankel singular value based model reduction functions

Syntax
GRED = reduce(G)

GRED = reduce(G,order)

[GRED,redinfo] = reduce(G,'key1','value1',...)

[GRED,redinfo] = reduce(G,order,'key1','value1',...)

Description
reduce returns a reduced order model GRED of G and a struct array redinfo containing the error
bound of the reduced model, Hankel singular values of the original system and some other relevant
model reduction information.

An error bound is a measure of how close GRED is to G and is computed based on either additive
error, ∥ G-GRED ∥∞, multiplicative error, ∥G–1(G-GRED) ∥∞, or nugap error (ref.: ncfmr) [1],[4],[5].

Hankel singular values of a stable system indicate the respective state energy of the system. Hence,
reduced order can be directly determined by examining the system Hankel SV's. Model reduction
routines, which based on Hankel singular values are grouped by their error bound types. In many
cases, the additive error method GRED=reduce(G,ORDER) is adequate to provide a good reduced
order model. But for systems with lightly damped poles and/or zeros, a multiplicative error method
(namely, GRED=reduce(G,ORDER,'ErrorType','mult')) that minimizes the relative error
between G and GRED tends to produce a better fit.

This table describes input arguments for reduce.

Argument Description
G LTI model to be reduced (without any other inputs will plot its Hankel singular

values and prompt for reduced order).
ORDER (Optional) Integer for the desired order of the reduced model, or optionally a

vector packed with desired orders for batch runs.

A batch run of a serial of different reduced order models can be generated by specifying order =
x:y, or a vector of integers. By default, all the anti-stable part of a physical system is kept, because
from control stability point of view, getting rid of unstable state(s) is dangerous to model a system.

'MaxError' can be specified in the same fashion as an alternative for ' ORDER ' after an
'ErrorType' is selected. In this case, reduced order will be determined when the sum of the tails of
the Hankel SV's reaches the 'MaxError'.
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Argument Value Description
'Algorithm' 'balance'

'schur'

'hankel'

'bst'

'ncf'

Default for 'add' (balancmr)

Option for 'add' (schurmr)

Option for 'add' (hankelmr)

Default for 'mult' (bstmr)

Default for 'ncf' (ncfmr)
'ErrorType' 'add'

'mult'

'ncf'

Additive error (default)

Multiplicative error at model output

NCF nugap error
'MaxError' A real number or a

vector of different
errors

Reduce to achieve H∞ error.

When present, 'MaxError' overrides ORDER input.
'Weights' {Wout,Win} cell

array
Optimal 1x2 cell array of LTI weights Wout (output) and
Win (input); default is both identity; used only with
'ErrorType', 'add'. Weights must be invertible.

'Display' 'on' or 'off' Display Hankel singular plots (default 'off').
'Order' Integer, vector or

cell array
Order of reduced model. Use only if not specified as 2nd
argument.

Weights on the original model input and/or output can make the model reduction algorithm focus on
some frequency range of interests. But weights have to be stable, minimum phase and invertible.

This table describes output arguments.

Argument Description
GRED LTI reduced order model. Becomes multi-dimensional array when input is a

serial of different model order array.
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Argument Description
REDINFO A STRUCT array with 3 fields:

• REDINFO.ErrorBound
• REDINFO.StabSV
• REDINFO.UnstabSV

For 'hankel' algorithm, STRUCT array becomes:
• REDINFO.ErrorBound
• REDINFO.StabSV
• REDINFO.UnstabSV
• REDINFO.Ganticausal

For 'ncf' option, STRUCT array becomes:
• REDINFO.GL
• REDINFO.GR
• REDINFO.hsv

G can be stable or unstable. G and GRED can be either continuous or discrete.

A successful model reduction with a well-conditioned original model G will ensure that the reduced
model GRED satisfies the infinity norm error bound.

Examples

Reduce Model Order

Given a continuous or discrete, stable or unstable system, G, create a set of reduced-order models
based on your selections.

rng(1234,'twister'); % For reproducibility
G = rss(30,5,4);

If you call reduce without specifying an order for the reduced model, the software displays a Hankel
singular-value plot and prompts you to select an order.

If you specify a reduced-model order, reduce defaults to the balancmr algorithm for model
reduction.

[g1,redinfo1] = reduce(G,20);

Specify other algorithms using the Algorithm argument. Use the ErrorType argument to specify
whether the algorithm uses multiplicative or additive error, and the maximum permissible error in the
reduced model.

[g2,redinfo2] = reduce(G,[10:2:18],'Algorithm','schur'); 
[g3,redinfo3] = reduce(G,'ErrorType','mult','MaxError',[0.01 0.05]);
[g4,redinfo4] = reduce(G,'ErrorType','add','Algorithm','hankel','MaxError',[0.01]);
for i = 1:4
    figure(i); eval(['sigma(G,g' num2str(i) ');']);
end
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See Also
balancmr | schurmr | bstmr | ncfmr | hankelmr | hankelsv
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Introduced before R2006a
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repmat
Replicate and tile array

Syntax
B = repmat(A,M,N)

Description
B = repmat(A,M,N) creates a large matrix B consisting of an M-by-N tiling of copies of A.

B = repmat(A,[M N]) accomplishes the same result as repmat(A,M,N).

B = repmat(A,[M N P ...]) tiles the array A to produce an M-by-N-by-P-by-... block array. A can
be N-D.

repmat(A,M,N) for scalar A is commonly used to produce an M-by-N matrix filled with values of A.

Examples
Simple examples of using repmat are

repmat(randumat(2,2),2,3) 
repmat(ureal('A',6),[4 2])

Introduced before R2006a
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rncf
Right normalized coprime factorization

Syntax
fact = rncf(sys)
[fact,Mr,Nr] = rncf(sys)

Description
fact = rncf(sys) computes the right normalized coprime factorization of the dynamic system
model sys. The factorization is given by:

sys = NrMr
−1, Mr*Mr + Nr*Nr = I .

Here, Mr* denotes the conjugate of Mr (see ctranspose). The returned model fact is a minimal
state-space realization of the stable system [Mr;Nr]. This factorization is used in other normalized
coprime factor computations such as model reduction (ncfmr) and controller synthesis (ncfsyn).

[fact,Mr,Nr] = rncf(sys) also returns the coprime factors Mr and Nr.

Examples

Right Normalized Coprime Factorization of SISO System

Compute the right normalized coprime factorization of a SISO system.

sys = zpk([1 -1+2i -1-2i],[-1 2+1i 2-1i],1);
[fact,Mr,Nr] = rncf(sys);

Examine the original system and its factors.

sys

sys =
 
  (s-1) (s^2 + 2s + 5)
  --------------------
  (s+1) (s^2 - 4s + 5)
 
Continuous-time zero/pole/gain model.

zpk(Mr)

ans =
 
  0.70711 (s+1) (s^2 - 4s + 5)
  ----------------------------
    (s+1) (s^2 + 3.162s + 5)
 
Continuous-time zero/pole/gain model.
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zpk(Nr)

ans =
 
  0.70711 (s-1) (s^2 + 2s + 5)
  ----------------------------
    (s+1) (s^2 + 3.162s + 5)
 
Continuous-time zero/pole/gain model.

The numerators of the factors Mr and Nr are the denominator and numerator of sys, respectively.
Thus, sys = Nr/Mr. rncf chooses the denominators of the factors such that the system
Mr jω ; Nr jω  is a unit vector at all frequencies. To confirm that property of the factorization,

examine the singular values of fact, which is a stable minimal realization of Mr jω ; Nr jω .

sigma(fact)

Within a small numerical error, the singular value of fact is 1 (0 dB) at all frequencies.

Right Normalized Coprime Factorization of MIMO System

Compute the right normalized coprime factorization of a state-space model that has two outputs, two
inputs, and three states.
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rng(0); % for reproducibility
sys = rss(3,2,2);
[fact,Mr,Nr] = rncf(sys);

fact is a stable minimal realization of the factorization given by [Mr;Nr].

isstable(fact)

ans = logical
   1

Another property of fact is that its frequency response F(jω) is an orthogonal matrix at all
frequencies (F(jω)'F(jω) = I). Confirm this property by examining the singular values of fact. Within
a small numerical error, the singular values are 1 (0 dB) at all frequencies.

sigma(fact)

Confirm that the factors satisfy sys = Nr/Mr by examining the singular values of both.

sigma(sys,'b-',Nr/Mr,'r--')
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Input Arguments
sys — Input system
dynamic system model

Input system to factorize, specified as a dynamic system model such as a state-space (ss) model. If
sys is a generalized state-space model with uncertain or tunable control design blocks, then the
function uses the nominal or current value of those elements. sys cannot be an frd model or a model
with time delays.

Output Arguments
fact — Minimal realization of [Mr;Nr]
ss model

Minimal realization of [Mr;Nr], returned as a state-space model. fact is stable and its frequency
response is an orthogonal matrix at all frequencies. If sys has p outputs and m inputs, then fact has
m+p outputs and m inputs. fact has the same number of states as sys.

Mr,Nr — Right coprime factors
ss models

Right coprime factors of sys, returned as state-space models. If sys has p outputs and m inputs,
then:
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• Mr has m outputs and m inputs.
• Nr has p outputs and m inputs.

Both factors have the same number of states as sys and the same A and B matrices as fact.

Tips
• fact is a minimal realization of [Mr;Nr]. If you need to use [Mr;Nr] or [Mr;Nr]' in a

computation, it is better to use fact than to concatenate the factors yourself. Such manual
concatenation results in extra (nonminimal) states, which can lead to decreased numerical
accuracy.

See Also
lncf | ncfmr | ncfsyn

Introduced in R2019a

 rncf

1-429



robgain
Robust performance of uncertain system

Syntax
[perfmarg,wcu] = robgain(usys,gamma)
[perfmarg,wcu] = robgain(usys,gamma,w)
[perfmarg,wcu] = robgain( ___ ,opts)
[perfmarg,wcu,info] = robgain( ___ )

Description
[perfmarg,wcu] = robgain(usys,gamma) calculates the robust performance margin for an
uncertain system and the performance level gamma. The performance of usys is measured by its peak
gain or peak singular value (see “Robustness and Worst-Case Analysis”). The performance margin is
relative to the uncertainty level specified in usys. A margin greater than 1 means that the gain of
usys remains below gamma for all values of the uncertainty modeled in usys. A margin less than 1
means that at some frequency, the gain of usys exceeds gamma for some values of the uncertain
elements within their specified ranges. For example, a margin of 0.5 implies the following:

• The gain of usys remains below gamma as long as the uncertain element values stay within 0.5
normalized units of their nominal values.

• There is a perturbation of size 0.5 normalized units that drives the peak gain to the level gamma.

The structure perfmarg contains upper and lower bounds on the actual performance margin and the
critical frequency at which the margin upper bound is smallest. The structure wcu contains the
uncertain-element values that drive the peak gain to the level gamma.

[perfmarg,wcu] = robgain(usys,gamma,w) assesses the robust performance margin for the
frequencies specified by w.

• If w is a cell array of the form {wmin,wmax}, then robgain restricts the performance margin
computation to the interval between wmin and wmax.

• If w is a vector of frequencies, then robgain computes the performance margin at the specified
frequencies only.

[perfmarg,wcu] = robgain( ___ ,opts) specifies additional options for the computation. Use
robOptions to create opts. You can use this syntax with any of the previous input-argument
combinations.

[perfmarg,wcu,info] = robgain( ___ ) returns a structure with additional information about
the performance margins and the perturbations that drive the gain to gamma. See info for details
about this structure. You can use this syntax with any of the previous input-argument combinations.

Examples
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Robust Performance of Closed-Loop System

Consider a control system whose plant contains both parametric uncertainty and dynamic
uncertainty. Create a model of the plant using uncertain elements.

k = ureal('k',10,'Percent',40);
delta = ultidyn('delta',[1 1]); 
G = tf(18,[1 1.8 k]) * (1 + 0.5*delta);

Create a model of the controller, and build the closed-loop sensitivity function, S. The sensitivity
measures the closed-loop response at the plant output to a disturbance at the plant input.

C = pid(2.3,3,0.38,0.001);
S = feedback(1,G*C);
bodemag(S,S.NominalValue)

The peak gain of the nominal response is very nearly 1, but some of the sampled systems within the
uncertainty range exceed that level. Suppose that you can tolerate some ringdown in the response
but do not want the peak gain to exceed 1.5. Use robgain to find out how much uncertainty the
system can have while the peak gain remains below 1.5.

[perfmarg,wcu] = robgain(S,1.5);
perfmarg

perfmarg = struct with fields:
           LowerBound: 0.7821
           UpperBound: 0.7837
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    CriticalFrequency: 7.8565

The LowerBound and UpperBound fields of perfmarg show that the robust performance margin is
around 0.78. This result means that there is a perturbation of only about 78% of the uncertainty
specified in S with peak gain exceeding 1.5.

You can use uscale to examine what that normalized uncertainty of 78% means in terms of actual
ranges of uncertainty. Scale all the uncertain elements in S to create a model of the closed-loop
system with the maximum level of uncertainty that meets the performance requirement.

factor = perfmarg.LowerBound;
S_scaled = uscale(S,factor)

S_scaled =

  Uncertain continuous-time state-space model with 1 outputs, 1 inputs, 4 states.
  The model uncertainty consists of the following blocks:
    delta: Uncertain 1x1 LTI, peak gain = 0.782, 1 occurrences
    k: Uncertain real, nominal = 10, variability = [-31.3,31.3]%, 1 occurrences

Type "S_scaled.NominalValue" to see the nominal value, "get(S_scaled)" to see all properties, and "S_scaled.Uncertainty" to interact with the uncertain elements.

The display shows how the uncertain elements in S_scaled have changed: the peak gain of the
ultidyn element delta is reduced from 1 to 0.78, and the range of variation of the uncertain real
parameter k is reduced from ±40% to ±31.3%.

The output wcu is a structure that contains the perturbations to k and delta that correspond to the
target maximum performance of 1.5. Verify that the values in wcu cause Smax to achieve the gain
level of 1.5 by substituting them into S.

Smax = usubs(S,wcu);
getPeakGain(Smax,1e-6)

ans = 1.5001

Examine the disturbance rejection of the system with these values.

step(S.NominalValue,Smax)
legend('Nominal','Peak Gain = 1.5')
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The CriticalFrequency field of perfmarg contains the frequency at which the peak gain reaches
1.5.

Sensitivity of Performance to Uncertain Elements

Examine the relative sensitivity of the robust performance margin to the uncertain elements of the
system. Consider a model of a control system containing uncertain elements.

k = ureal('k',10,'Percent',50);
delta = ultidyn('delta',[1 1]); 
G = tf(18,[1 1.8 k]) * (1 + 0.15*delta);
C = pid(2.3,3,0.38,0.001);
S = feedback(1,G*C);

Create an options set for robgain that enables the sensitivity calculation.

opts = robOptions('Sensitivity','On');

Calculate the robust performance margin of the system relative to a peak gain of 1.5, specifying the
info output to access additional information about the calculation.

[perfmarg,wcu,info] = robgain(S,1.5,opts);

Examine the Sensitivity field of info.
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info.Sensitivity

ans = struct with fields:
    delta: 75
        k: 28

The values in this field indicate how much a change in the normalized perturbation on each element
affects the performance margin. For example, the sensitivity for k is 28. This value means that a given
change dk in the normalized uncertainty range of k causes a change of about 28% of that, or
0.28*dk, in the performance margin. The margin in this case is more sensitive to delta, for which
the margin changes by about 75% of the change in the normalized uncertainty range.

Robust Performance Margin as a Function of Frequency

Consider a model of a control system containing uncertain elements.

k = ureal('k',10,'Percent',40);
delta = ultidyn('delta',[1 1]); 
G = tf(18,[1 1.8 k]) * (1 + 0.5*delta);
C = pid(2.3,3,0.38,0.001);
S = feedback(1,G*C);

By default, robgain computes only the weakest performance margin over all frequencies. To see how
the margin varies with frequency, use the 'VaryFrequency' option of robOptions. For example,
compute the performance margin of the system for a performance level of 1.5, at frequency points
between 0.1 and 100 rad/s.

opts = robOptions('VaryFrequency','on');
[perfmarg,wcu,info] = robgain(S,1.5,{0.1,100},opts);
info

info = struct with fields:
                Model: 1
            Frequency: [32x1 double]
               Bounds: [32x2 double]
    WorstPerturbation: [32x1 struct]
          Sensitivity: [1x1 struct]

robgain returns the vector of frequencies in the info output, in the Frequencies field.
info.Bounds contains the upper and lower bounds on the performance margin at each frequency.
Use these values to plot the frequency dependence of the performance margin.

semilogx(info.Frequency,info.Bounds)
title('Performance Margin vs. Frequency')
ylabel('Margin')
xlabel('Frequency')
legend('Lower bound','Upper bound')
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When you use the 'VaryFrequency' option, robgain chooses frequency points automatically. The
frequencies it selects are guaranteed to include the frequency at which the margin is smallest (within
the specified range). Display the returned frequency values to confirm that they include the critical
frequency.

info.Frequency

ans = 32×1

    0.1000
    0.1266
    0.1604
    0.2031
    0.2572
    0.3257
    0.4125
    0.5223
    0.6615
    0.8377
      ⋮

perfmarg.CriticalFrequency

ans = 7.9967

Alternatively, instead of using 'VaryFrequency', you can specify particular frequencies at which to
compute the robust performance margins. info.Bounds contains the margins at all specified
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frequencies. However, these results are not guaranteed to include the weakest margin, which might
fall between specified frequency points.

w = logspace(-1,2,20); 
[perfmarg,wcu,info] = robgain(S,1.5,w);
semilogx(w,info.Bounds)
title('Performance Margin vs. Frequency')
ylabel('Margin')
xlabel('Frequency')
legend('Lower bound','Upper bound')

Input Arguments
usys — Dynamic system with uncertainty
uss | ufrd | genss | genfrd

Dynamic system with uncertainty, specified as a uss, ufrd, genss, or genfrd model that contains
uncertain elements. For genss or genfrd models, robgain uses the current value of any tunable
blocks and folds them into the known (not uncertain) part of the model.

usys can also be an array of uncertain models. In that case, robgain returns the smallest margin
across all models in the array, and the info output contains the index of the corresponding model.

gamma — Performance level
positive scalar
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Performance level, specified as a positive scalar. The performance level is the peak gain of a system
or, for MIMO systems, the peak singular value (H∞ norm). Generally, the lower this value, the better
the system performance. robgain computes the amount of uncertainty the system can tolerate while
keeping the peak gain below this level. For more information about this performance measure, see
“Robustness and Worst-Case Analysis”.

w — Frequencies
{wmin,wmax} | vector

Frequencies at which to compute robust performance margins, specified as the cell array
{wmin,wmax} or as a vector of frequency values.

• If w is a cell array of the form {wmin,wmax}, then the function computes the margins at
frequencies ranging between wmin and wmax.

• If w is a vector of frequencies, then the function computes the margins at each specified frequency.
For example, use logspace to generate a row vector with logarithmically spaced frequency
values.

Specify frequencies in units of rad/TimeUnit, where TimeUnit is the TimeUnit property of the
model.

opts — Options for margin computation
robOptions object

Options for computation of robust performance margins, specified as an object you create with
robOptions. The available options include settings that let you:

• Extract frequency-dependent performance margins.
• Examine the sensitivity of the margins to each uncertain element.
• Improve the results of the performance-margin calculation by setting certain options for the

underlying mussv calculation. In particular, setting the option 'MussvOptions' to 'mN' can
reduce the gap between the lower bound and upper bound. N is the number of restarts.

For more information about all available options, see robOptions.
Example: robOptions('Sensitivity','on','MussvOptions','m3')

Output Arguments
perfmarg — Robust performance margin and critical frequency
structure

Robust performance margin and critical frequency, returned as a structure containing the following
fields:

 robgain

1-437



Field Description
LowerBound Lower bound on the actual robust performance margin of

the model with respect to gamma, returned as a scalar
value. The exact margin is guaranteed to be no smaller
than LowerBound. In other words, for all modeled
uncertainty with normalized magnitude up to
LowerBound, the system is guaranteed to have peak gain
below gamma.

UpperBound Upper bound on the actual robust performance margin,
returned as a scalar value. The exact margin is guaranteed
to be no larger than UpperBound. In other words, there
exist some uncertain-element values associated with this
magnitude that drive the peak gain above gamma.
robgain returns one such instance in wcu.

CriticalFrequency Frequency at which the performance margin is the
smallest, in rad/TimeUnit, where TimeUnit is the
TimeUnit property of usys.

A margin greater than 1 means that the gain of usys remains below gamma for all values of the
uncertainty modeled in usys. A margin less than 1 means that at some frequency, the gain of usys
exceeds gamma for some values of the uncertain elements within their specified ranges. For example,
a margin of 0.5 implies the following:

• The gain of usys remains below gamma as long as the uncertain element values stay within 0.5
normalized units of their nominal values.

• There is a perturbation of size 0.5 normalized units that drives the peak gain above gamma.

Use uscale to scale the amount of uncertainty in usys by the performance margin to examine the
actual ranges of uncertainty that yield the target performance.

If the nominal value of usys has peak gain greater than gamma, the performance margin is 0.

If usys is an array of uncertain models, perfmarg contains the smallest margin across all models in
the array. In that case, the info output contains the index of the corresponding model in its Model
field.

wcu — Perturbations driving system gain to gamma
structure

Smallest perturbations of uncertain elements that drive the peak gain of usys to the level gamma,
returned as a structure whose fields are the names of the uncertain elements of usys. Each field
contains the actual value of the corresponding uncertain element. For example, if usys includes an
uncertain matrix M and SISO uncertain dynamics delta, then wcu.M is a numeric matrix and
wcu.delta is a SISO state-space model.

Use usubs(usys,wcu) to substitute these values for the uncertain elements in usys and obtain the
corresponding dynamic system. This system has peak gain gamma.Use actual2normalized to
convert these actual uncertainty values to the normalized units in which the performance margin is
expressed.

For ureal parameters in usys whose range is not centered around the nominal value, robgain
makes the following adjustments for the purposes of its analysis:
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• When the worst perturbation (the smallest perturbation achieving target gain) lies outside the
range of validity of the actual-to-normalized transformation (see getLimits), then robgain sets
the corresponding entry of wcu to the nearest valid value. In other words, if actpert is the worst
perturbation in actual units, robgain sets wcu to the nearest value inside the interval ActLims
returned by getLimits.

• When there is no perturbation causing the system to exceed the target gain, then robgain sets
the corresponding entry of wcu to the nominal value of the ureal parameter.

info — Additional information about performance margins
structure

Additional information about the performance margins, returned as a structure with the following
fields:

Field Description
Model Index of the model that has the weakest performance

margin, when usys is an array of models.
Frequency Frequency points at which robgain returns the robust

performance margin, returned as a vector.

• If the 'VaryFrequency' option of robOptions is
'off', then info.Frequency is the critical frequency,
the frequency at which the smallest margin occurs. If
the smallest lower bound and the smallest upper bound
on the performance margin occur at different
frequencies, then info.Frequency is a vector
containing these two frequencies.

• If the 'VaryFrequency' option of robOptions is
'on', then info.Frequency contains the frequencies
selected by robgain. These frequencies are guaranteed
to include the frequency at which the performance
margin is smallest.

• If you specify a vector of frequencies w at which to
compute the performance margins, then
info.Frequency = w. When you specify a frequency
vector, these frequencies are not guaranteed to include
the frequency at which the margin is smallest.

The 'VaryFrequency' option is meaningful only for uss
and genss models. robgain ignores the option for ufrd
and genfrd models.

Bounds Lower and upper bounds on the actual robust performance
margin of the model, returned as an array.
info.Bounds(:,1) contains the lower bound at each
corresponding frequency in info.Frequency, and
info.Bounds(:,2) contains the corresponding upper
bounds.
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Field Description
WorstPerturbation Smallest perturbations at each frequency point in

info.Frequency, returned as a structure array. The fields
of info.WorstPerturbation are the names of the
uncertain elements in usys. Each field contains the value of
the corresponding element that drives the peak gain above
gamma at each frequency. For example, if usys includes an
uncertain parameter p and SISO uncertain dynamics
delta, then info.WorstPerturbation.p is a collection
of numeric values and info.WorstPerturbation.delta
is a collection of SISO state-space models.

Sensitivity Sensitivity of the performance margin to each uncertain
element, returned as a structure when the 'Sensitivity'
option of robOptions is 'on'. The fields of
info.Sensitivity are the names of the uncertain
elements in usys. Each field contains a percentage that
measures how much the uncertainty in the corresponding
element affects the performance margin. For example, if
info.Sensitivity.p is 50, then a given fractional
change in the uncertainty range of p causes half as much
fractional change in the performance margin.

If the 'Sensitivity' option of robOptions is off (the
default setting), then info.Sensitivity is NaN.

Algorithms
Computing the robustness margin at a particular frequency is equivalent to computing the structured
singular value, μ, for some appropriate block structure (μ-analysis).

For uss and genss models, robgain(usys) and robgain(usys,{wmin,wmax}) use an algorithm
that finds the smallest margin across frequency. This algorithm does not rely on frequency gridding
and is not adversely affected by discontinuities of the μ structured singular value. See “Getting
Reliable Estimates of Robustness Margins” for more information.

For ufrd and genfrd models, robgain computes the μ lower and upper bounds at each frequency
point. This computation offers no guarantee between frequency points and can be inaccurate if there
are discontinuities or sharp peaks in μ. The syntax robgain(uss,w), where w is a vector of
frequency points, is the same as robgain(ufrd(uss,w)) and also relies on frequency gridding to
compute the margin.

In general, the algorithm for state-space models is faster and safer than the frequency-gridding
approach. In some cases, however, the state-space algorithm requires many μ calculations. In those
cases, specifying a frequency grid as a vector w can be faster, provided that the robustness margin
varies smoothly with frequency. Such smooth variation is typical for systems with dynamic
uncertainty.

See Also
robstab | robOptions | wcgain | uscale
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Topics
“Robust Stability, Robust Performance and Mu Analysis”
“Robustness and Worst-Case Analysis”

Introduced in R2016b
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robOptions
Option set for robustness analysis

Syntax
opts = robOptions
opts = robOptions(Name,Value,...)

Description
opts = robOptions returns the default option set for robustness analysis commands robstab and
robgain, and for musynperf.

opts = robOptions(Name,Value,...) creates an option set with the options specified by one or
more Name,Value pair arguments.

Examples

Options for Robustness Margin Calculation

Create an options set for a robstab, robgain, or musynperf calculation that displays the progress
of the underlying mussv calculation. Also, turn on the element-by-element sensitivity calculation.

opts = robOptions('Display','on','Sensitivity','on');

Alternatively, create a default option set, and use dot notation to set the values of particular options.

opts = robOptions;
opts.Display = 'on';
opts.Sensitivity = 'on';

Use opts as an input argument to robstab, robgain, or musynperf.

Input Arguments
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Display','on','Sensitivity','on'

Display — Display progress of computation and summary report
'off' (default) | 'on'

Display progress and summary of the robustness computation, specified as the comma-separated pair
consisting of 'Display' and one of these values:
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• 'off' — Do not display progress and report.
• 'on' — Display progress and report. When you use this option, a progress indicator and summary

of results is displayed in the command window, similar to the following.

points completed (of 28) ... 28
System is robustly stable for the modeled uncertainty.
 -- It can tolerate up to 116% of the modeled uncertainty.
 -- There is a destabilizing perturbation amounting to 117% of the modeled uncertainty.
 -- This perturbation causes an instability at the frequency 5.9 rad/seconds.

This setting overrides the silent ('s') option in the MussvOptions option.

VaryFrequency — Compute robustness margin as function of frequency
'off' (default) | 'on'

Return robustness margin as a function of frequency, specified as the comma-separated pair
consisting of 'VaryFrequency' and one of these values:

• 'off' — Only return margins at frequencies where robustness is weakest.
• 'on' — Compute robustness margins over a frequency grid suitable for plotting. The frequency

grid is chosen automatically based on system dynamics. This calculation is done in addition to
identifying the critical frequency where the margin is weakest. Access the frequency values and
corresponding margins in the info output of robstab and robgain.

This option is ignored for ufrd and genfrd models.

Sensitivity — Calculate sensitivity of robustness margin
'off' (default) | 'on'

Calculate the sensitivity of the robustness margin to each uncertain element in the model, specified
as the comma-separated pair consisting of 'Sensitivity' and either 'off' or 'on'.

Each uncertain element contributes to the overall stability margin in a coupled manner. Set this
option to 'on' to estimate the sensitivity of the margin to each element. This element-by-element
sensitivity provides an indication of which elements are most problematic for robustness. Access the
sensitivity estimates in the info output of robstab and robgain.

SensitivityPercent — Percentage variation of uncertainty for computing sensitivity
25 (default) | positive scalar value

Percentage variation of uncertainty level for computing sensitivity, specified as the comma-separated
pair consisting of 'SensitivityPercent' and a positive scalar value. The sensitivity to a particular
uncertain element is estimated using a finite difference calculation. This calculation increases the
(normalized) amount of uncertainty on this element by some percentage, computes the resulting
robustness, and computes the ratio of percent variations. This option specifies the percentage
increase in uncertainty level applied to each element. The default value is 25%.

MussvOptions — Options for mussv calculation
'' (default) | character vector

Options for the underlying mussv calculation that robstab and robgain perform, specified as the
comma-separated pair consisting of 'MussvOptions' and a character vector such as 'sm3' or
'ad'.
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Some MussvOptions values that are especially useful for improving robustness-margin calculations
include:

• 'a' — Force the use of LMI optimization to compute the μ upper bound, which yields better
results in general but can be expensive when some ureal elements are repeated multiple times.

• 'mN' — Use multiple restarts when computing the μ lower bound, which corresponds to the upper
bound for robustness margins. This option can reduce the gap between the lower bound and
upper bound on the robustness margins. N is the number of restarts. For example, setting
'MussvOptions' to 'm3' causes three restarts.

See mussv for the remaining available options and corresponding characters. The default, '', uses
the default options for mussv.

Output Arguments
opts — Options for robustness commands
robOptions object

Options for robustness commands robstab, robgain, and musynperf, returned as a robOptions
object. Use the options as an input argument to robstab, robgain, or musynperf. For example:

[stabmarg,wcu,info] = robstab(usys,opts)

See Also
robgain | robstab | musynperf

Topics
“Robust Stability, Robust Performance and Mu Analysis”
“Robustness and Worst-Case Analysis”

Introduced in R2016b
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robstab
Robust stability of uncertain system

Syntax
[stabmarg,wcu] = robstab(usys)
[stabmarg,wcu] = robstab(usys,w)
[stabmarg,wcu] = robstab( ___ ,opts)
[stabmarg,wcu,info] = robstab( ___ )

Description
[stabmarg,wcu] = robstab(usys) calculates the robust stability margin for an uncertain
system. This stability margin is relative to the uncertainty level specified in usys. A robust stability
margin greater than 1 means that the system is stable for all values of its modeled uncertainty. A
robust stability margin less than 1 means that the system becomes unstable for some values of the
uncertain elements within their specified ranges. For example, a margin of 0.5 implies the following:

• usys remains stable as long as the uncertain element values stay within 0.5 normalized units of
their nominal values.

• There is a destabilizing perturbation of size 0.5 normalized units.

The structure stabmarg contains upper and lower bounds on the actual stability margin and the
critical frequency at which the stability margin is smallest. The structure wcu contains the
destabilizing values of the uncertain elements.

[stabmarg,wcu] = robstab(usys,w) restricts the robust stability margin computation to the
frequencies specified by w.

• If w is a cell array of the form {wmin,wmax}, then robstab restricts the stability margin
computation to the interval between wmin and wmax.

• If w is a vector of frequencies, then robstab computes the robust stability margin at the specified
frequencies only.

[stabmarg,wcu] = robstab( ___ ,opts) specifies additional options for the computation. Use
robOptions to create opts. You can use this syntax with any of the previous input-argument
combinations.

[stabmarg,wcu,info] = robstab( ___ ) returns a structure with additional information about
the stability margins and destabilizing perturbations. See info for details about this structure. You
can use this syntax with any of the previous input-argument combinations.

Examples

Robust Stability Margin of Closed-Loop System

Consider a control system whose plant contains both parametric uncertainty and dynamic
uncertainty. Create a model of the plant using uncertain elements.
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k = ureal('k',10,'Percent',40);
delta = ultidyn('delta',[1 1]); 
G = tf(18,[1 1.8 k]) * (1 + 0.5*delta);

Create a model of the controller, and build the closed-loop transfer function.

C = pid(2.3,3,0.38,0.001);
CL = feedback(G*C,1);

A step response plot shows that the closed-loop system is nominally stable.

step(CL.NominalValue)

Examine the robust stability of the closed-loop system.

[stabmarg,wcu] = robstab(CL);
stabmarg

stabmarg = struct with fields:
           LowerBound: 1.5961
           UpperBound: 1.5993
    CriticalFrequency: 4.8628

The LowerBound and UpperBound fields of stabmarg show the robust stability margin of the
closed-loop system is around 1.6. This result means that the system can withstand about 60% more
uncertainty than is specified in the uncertain elements without going unstable.
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You can use uscale to scale system uncertainty by the stability margin, to examine the system
response for the full range of safe uncertainties. Scale the uncertainties in CL by the robust stability
margin to create a system with the maximum tolerable amount of uncertainty.

CLmaxunc = uscale(CL,stabmarg.UpperBound);
CLmaxunc.Uncertainty.delta

ans = 
  Uncertain LTI dynamics "delta" with 1 outputs, 1 inputs, and gain less than 1.6.

CLmaxunc.Uncertainty.k

ans = 
  Uncertain real parameter "k" with nominal value 10 and variability [-64,64]%.

The uncertain elements in CLmaxunc have ranges about 1.6 times the range of the original modeled
uncertainty in CL.

The output wcu is a structure that contains the smallest perturbation to k and delta that make the
system unstable. Confirm the instability by substituting these values into the closed-loop model and
examining the pole locations.

CLunst = usubs(CL,wcu);
pole(CLunst)

ans = 8×1 complex
102 ×

  -9.9314 + 0.0000i
  -0.1027 + 0.1009i
  -0.1027 - 0.1009i
   0.0000 + 0.0486i
   0.0000 - 0.0486i
  -0.0115 + 0.0000i
  -0.0216 + 0.0000i
  -0.0403 + 0.0000i

The resulting system has an undamped pair of complex poles with natural frequency 4.89, which
renders it unstable. The CriticalFrequency field of stabmarg contains the same value, which is
the frequency at which the CL is closest to instability.

Sensitivity to Uncertain Elements

Examine the relative sensitivity of the robust stability margin to the uncertain elements of the system.
Consider a model of a control system containing uncertain elements.

k = ureal('k',10,'Percent',40);
delta = ultidyn('delta',[1 1]); 
G = tf(18,[1 1.8 k]) * (1 + 0.25*delta);
C = pid(2.3,3,0.38,0.001);
CL = feedback(G*C,1);

Create an options set for robstab that enables the sensitivity calculation.

 robstab

1-447



opts = robOptions('Sensitivity','On');

Calculate the robust stability margin, specifying the info output to access additional information
about the calculation.

[stabmarg,wcu,info] = robstab(CL,opts);

Examine the Sensitivity field of info.

info.Sensitivity

ans = struct with fields:
    delta: 80
        k: 20

The values in this field indicate how much a change in the normalized perturbation on each element
affects the stability margin. For example, the sensitivity for k is 21. This value means that a given
change dk in the normalized uncertainty range of k causes a change of about 21% percent of that, or
0.21*dk, in the stability margin. The margin in this case is much more sensitive to delta, for which
the margin changes by about 81% of the change in the normalized uncertainty range.

Robust Stability Margin as a Function of Frequency

Consider a model of a control system containing uncertain elements.

k = ureal('k',10,'Percent',40);
delta = ultidyn('delta',[1 1]); 
G = tf(18,[1 1.8 k]) * (1 + 0.5*delta);
C = pid(2.3,3,0.38,0.001);
CL = feedback(G*C,1);

By default, robstab computes only the weakest stability margin over all frequencies. To see how the
stability margin varies with frequency, use the 'VaryFrequency' option of robOptions. For
example, compute the stability margin of the system at frequency points between 0.1 and 10 rad/s.

opts = robOptions('VaryFrequency','on');
[stabmarg,wcu,info] = robstab(CL,{0.1,10},opts);
info

info = struct with fields:
                Model: 1
            Frequency: [19x1 double]
               Bounds: [19x2 double]
    WorstPerturbation: [19x1 struct]
          Sensitivity: [1x1 struct]

robstab returns the vector of frequencies in the info output, in the Frequencies field.
info.Bounds contains the upper and lower bounds on the stability margin at each frequency. Use
these values to plot the frequency dependence of the stability margin.

semilogx(info.Frequency,info.Bounds)
title('Stability Margin vs. Frequency')
ylabel('Margin')
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xlabel('Frequency')
legend('Lower bound','Upper bound')

When you use the 'VaryFrequency' option, robstab chooses frequency points automatically. The
frequencies it selects are guaranteed to include the frequency at which the stability margin is
weakest (within the specified range). Display the returned frequency values to confirm that they
include the critical frequency.

info.Frequency

ans = 19×1

    0.1000
    0.1061
    0.1425
    0.1914
    0.2572
    0.3455
    0.4642
    0.6236
    0.8377
    1.1253
      ⋮

stabmarg.CriticalFrequency

ans = 4.8280
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Alternatively, instead of using 'VaryFrequency', you can specify particular frequencies at which to
compute the robust stability margins. info.Bounds contains the margins at all specified
frequencies. However, these results are not guaranteed to include the weakest margin, which might
fall between specified frequency points.

w = logspace(-1,1,25); 
[stabmarg,wcu,info] = robstab(CL,w);
semilogx(w,info.Bounds)
title('Stability Margin vs. Frequency')
ylabel('Margin')
xlabel('Frequency')
legend('Lower bound','Upper bound')

Input Arguments
usys — Dynamic system with uncertainty
uss | ufrd | genss | genfrd

Dynamic system with uncertainty, specified as a uss, ufrd, genss, or genfrd model that contains
uncertain elements. For genss or genfrd models, robstab uses the current value of any tunable
blocks and folds them into the known (not uncertain) part of the model.

For frequency-response models, ufrd or genfrd, robstab assumes that the system is nominally
stable.
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usys can also be an array of uncertain models. In that case, robstab returns the smallest margin
across all models in the array, and the info output contains the index of the corresponding model.

w — Frequencies
{wmin,wmax} | vector

Frequencies at which to compute robust stability margins, specified as the cell array {wmin,wmax}
or as a vector of frequency values.

• If w is a cell array of the form {wmin,wmax}, then the function computes the margins at
frequencies ranging between wmin and wmax.

• If w is a vector of frequencies, then the function computes the margins at each specified frequency.
For example, use logspace to generate a row vector with logarithmically spaced frequency
values.

For uss and genss models, when w is a vector, robstab(usys,w) is equivalent to
robstab(ufrd(usys,w)). Therefore, usys must be nominally stable.

Specify frequencies in units of rad/TimeUnit, where TimeUnit is the TimeUnit property of the
model.

opts — Options for margin computation
robOptions object

Options for computation of robust stability margins, specified as an object you create with
robOptions. The available options include settings that let you:

• Extract frequency-dependent stability margins.
• Examine the sensitivity of the margins to each uncertain element.
• Improve the results of the stability-margin calculation by setting certain options for the underlying

mussv calculation. In particular, setting the option 'MussvOptions' to 'mN' can reduce the gap
between the lower bound and upper bound. N is the number of restarts.

For more information about all available options, see robOptions.
Example: robOptions('Sensitivity','on','MussvOptions','m3')

Output Arguments
stabmarg — Robust stability margin and critical frequency
structure

Robust stability margin and critical frequency, returned as a structure containing the following fields:

Field Description
LowerBound Lower bound on the actual robust stability margin of the

model, returned as a scalar value. The exact stability
margin is guaranteed to be no smaller than LowerBound.
In other words, for all modeled uncertainty with
normalized magnitude up to LowerBound, the system is
guaranteed stable.
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Field Description
UpperBound Upper bound on the actual robust stability margin of the

model, returned as a scalar value. The exact stability
margin is guaranteed to be no larger than UpperBound. In
other words, there exist some uncertain-element values
associated with this magnitude that cause instability.
robstab returns one such instance in wcu.

CriticalFrequency Frequency at which the stability margin is the smallest, in
rad/TimeUnit, where TimeUnit is the TimeUnit
property of usys.

A robust stability margin greater than 1 means that usys is stable for all values of its modeled
uncertainty. A robust stability margin less than 1 implies that usys becomes unstable for some values
of its uncertain elements within their specified ranges. For example, a margin of 0.5 implies the
following:

• usys remains stable as long as the uncertain element values stay within 0.5 normalized units of
their nominal values.

• There is a destabilizing perturbation of size 0.5 normalized units.

Use uscale to scale the amount of uncertainty in usys by the stability margin to examine the actual
tolerable ranges of uncertainty.

If the nominal value of usys is unstable, the stability margin is 0. If usys is a ufrd or genfrd model,
robstab assumes it is nominally stable.

If usys is an array of uncertain models, stabmarg contains the smallest margin across all models in
the array. In that case, the info output contains the index of the corresponding model in its Model
field.

wcu — Perturbations causing instability
structure

Smallest perturbations of uncertain elements that cause instability in usys, returned as a structure
whose fields are the names of the uncertain elements of usys. Each field contains the actual
destabilizing value for each uncertain element of usys. For example, if usys includes an uncertain
matrix M and SISO uncertain dynamics delta, then wcu.M is a numeric matrix and wcu.delta is a
SISO state-space model.

Use usubs(usys,wcu) to substitute these values for the uncertain elements in usys, to obtain the
unstable dynamic system that deviates the least from the nominal system. Use actual2normalized
to convert these actual uncertainty values to the normalized units in which the stability margin is
expressed.

For ureal parameters in usys whose range is not centered around the nominal value, robstab
makes the following adjustments for the purposes of its analysis:

• When the worst perturbation (the smallest destabilizing perturbation) lies outside the range of
validity of the actual-to-normalized transformation (see getLimits), then robstab sets the
corresponding entry of wcu to the nearest valid value. In other words, if actpert is the worst
perturbation in actual units, robgain sets wcu to the nearest value inside the interval ActLims
returned by getLimits.
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• When there is no destabilizing perturbation, then robstab sets the corresponding entry of wcu to
the nominal value of the ureal parameter.

info — Additional information about stability margins
structure

Additional information about the robust stability margins, returned as a structure with the following
fields:

Field Description
Model Index of the model that has the weakest stability margin,

when usys is an array of models.
Frequency Frequency points at which robstab returns the robust

stability margin, returned as a vector.

• If the 'VaryFrequency' option of robOptions is
'off', then info.Frequency is the critical frequency,
the frequency at which the smallest margin occurs. If
the smallest lower bound and the smallest upper bound
on the stability margin occur at different frequencies,
then info.Frequency is a vector containing these two
frequencies.

• If the 'VaryFrequency' option of robOptions is
'on', then info.Frequency contains the frequencies
selected by robstab. These frequencies are guaranteed
to include the frequency at which the stability margin is
smallest.

• If you specify a vector of frequencies w at which to
compute the stability margins, then info.Frequency
= w. When you specify a frequency vector, these
frequencies are not guaranteed to include the frequency
at which the stability margin is smallest.

The 'VaryFrequency' option is meaningful only for uss
and genss models. robstab ignores the option for ufrd
and genfrd models.

Bounds Lower and upper bounds on the actual robust stability
margin of the model, returned as an array.
info.Bounds(:,1) contains the lower bound at each
corresponding frequency in info.Frequency, and
info.Bounds(:,2) contains the corresponding upper
bounds.
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Field Description
WorstPerturbation Smallest destabilizing perturbations at each frequency

point in info.Frequency, returned as a structure array.
The fields of info.WorstPerturbation are the names of
the uncertain elements in usys, and each field contains the
destabilizing value of the corresponding element at each
frequency. For example, if usys includes an uncertain
parameter p and SISO uncertain dynamics delta, then
info.WorstPerturbation.p is a collection of numeric
values and info.WorstPerturbation.delta is a
collection of SISO state-space models.

Sensitivity Sensitivity of the stability margin to each uncertain
element, returned as a structure when the 'Sensitivity'
option of robOptions is 'on'. The fields of
info.Sensitivity are the names of the uncertain
elements in usys. Each field contains a percentage that
measures how much the uncertainty in the corresponding
element affects the stability margin. For example, if
info.Sensitivity.p is 50, then a given fractional
change in the uncertainty range of p causes half as much
fractional change in the stability margin.

If the 'Sensitivity' option of robOptions is off (the
default setting), then info.Sensitivity is NaN.

Algorithms
Computing the robustness margin at a particular frequency is equivalent to computing the structured
singular value, μ, for some appropriate block structure (μ-analysis).

For uss and genss models, robstab(usys) and robstab(usys,{wmin,wmax}) use an algorithm
that finds the smallest margin across frequency. This algorithm does not rely on frequency gridding
and is not adversely affected by discontinuities of the μ structured singular value. See “Getting
Reliable Estimates of Robustness Margins” for more information.

For ufrd and genfrd models, robstab computes the μ lower and upper bounds at each frequency
point. This computation offers no guarantee between frequency points and can be inaccurate if there
are discontinuities or sharp peaks in μ. The syntax robstab(uss,w), where w is a vector of
frequency points, is the same as robstab(ufrd(uss,w)) and also relies on frequency gridding to
compute the margin.

In general, the algorithm for state-space models is faster and safer than the frequency-gridding
approach. In some cases, however, the state-space algorithm requires many μ calculations. In those
cases, specifying a frequency grid as a vector w can be faster, provided that the robustness margin
varies smoothly with frequency. Such smooth variation is typical for systems with dynamic
uncertainty.

See Also
robgain | robOptions | wcgain | mussv | actual2normalized | normalized2actual | uscale
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Topics
“Robust Stability and Worst-Case Gain of Uncertain System”
“Robust Stability, Robust Performance and Mu Analysis”
“Robustness and Worst-Case Analysis”

Introduced in R2016b
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robustperf
(Not recommended) Robust performance margin of uncertain multivariable system

Note robustperf is not recommended. Use robgain instead.

Syntax
perfmarg = robustperf(usys)

[perfmarg,wcu,report,info] = robustperf(usys)

[perfmarg,wcu,report,info] = robustperf(usys,opt)

Description
The performance of a nominally stable uncertain system model will generally degrade for specific
values of its uncertain elements. robustperf, largely included for historical purposes, computes the
robust performance margin, which is one measure of the level of degradation brought on by the
modeled uncertainty.

As with other uncertain-system analysis tools, only bounds on the performance margin are computed.
The exact robust performance margin is guaranteed to lie between these upper and lower bounds.

The computation used in robustperf is a frequency-domain calculation. Coupled with stability of
the nominal system, this frequency domain calculation determines robust performance of usys. If the
input system usys is a ufrd, then the analysis is performed on the frequency grid within the ufrd.
Note that the stability of the nominal system is not verified by the computation. If the input system
sys is a uss, then the stability of the nominal system is first checked, an appropriate frequency grid is
generated (automatically), and the analysis performed on that frequency grid. In all discussion that
follows, N denotes the number of points in the frequency grid.

Basic Syntax

Suppose usys is a ufrd or uss with M uncertain elements. The results of

[perfmarg,perfmargunc,Report] = robustperf(usys) 

are such that perfmarg is a structure with the following fields:

Field Description
LowerBound Lower bound on robust performance margin, positive scalar.
UpperBound Upper bound on robust performance margin, positive scalar.
CriticalFrequency The value of frequency at which the performance degradation curve

crosses the y = 1/x curve. See “Robustness and Worst-Case
Analysis”.

perfmargunc is a struct of values of uncertain elements associated with the intersection of the
performance degradation curve and the y = 1/x curve. See “Robustness and Worst-Case Analysis”.
There are M field names, which are the names of uncertain elements of usys.
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Report is a text description of the robust performance analysis results.

If usys is an array of uncertain models, the outputs are struct arrays whose entries correspond to
each model in the array.

Examples
Create a plant with a nominal model of an integrator, and include additive unmodeled dynamics
uncertainty of a level of 0.4 (this corresponds to 100% model uncertainty at 2.5 rads/s).

P = tf(1,[1 0]) + ultidyn('delta',[1 1],'bound',0.4); 

Design a “proportional” controller K that puts the nominal closed-loop bandwidth at 0.8 rad/s. Roll off
K at a frequency 25 times the nominal closed-loop bandwidth. Form the closed-loop sensitivity
function.

BW = 0.8; 
K = tf(BW,[1/(25*BW) 1]); 
S = feedback(1,P*K); 

Assess the performance margin of the closed-loop sensitivity function. Because the nominal gain of
the sensitivity function is 1, and the performance degradation curve is monotonically increasing (see
“Robustness and Worst-Case Analysis”), the performance margin should be less than 1.

[perfmargin,punc] = robustperf(S); 
perfmargin 
perfmargin = 
           UpperBound: 7.4305e-001 
           LowerBound: 7.4305e-001 
    CriticalFrequency: 5.3096e+000 

You can verify that the upper bound of the performance margin corresponds to a point on or above
the y=1/x curve. First, compute the normalized size of the value of the uncertain element, and check
that this agrees with the upper bound.

nsize = actual2normalized(S.Uncertainty.delta, punc.delta) 
nsize = 
perfmargin.UpperBound 
ans = 
  7.4305e-001 

Compute the system gain with that value substituted, and verify that the product of the normalized
size and the system gain is greater than or equal to 1.

gain = norm(usubs(S,punc),inf,.00001); 
nsize*gain 
ans = 
  1.0000e+000 

Finally, as a sanity check, verify that the robust performance margin is less than the robust stability
margin.

[stabmargin] = robuststab(S); 
stabmargin 
stabmargin = 
                UpperBound: 3.1251e+000 
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                LowerBound: 3.1251e+000 
    DestabilizingFrequency: 4.0862e+000 

While the robust stability margin is easy to describe (poles migrating from stable region into unstable
region), describing the robust performance margin is less elementary. See the diagrams and figures
in “Robustness and Worst-Case Analysis”. Rather than finding values for uncertain elements that lead
to instability, the analysis finds values of uncertain elements “corresponding to the intersection point
of the performance degradation curve with a y=1/x hyperbola.” This characterization, mentioned
above in the description of perfmarg.CriticalFrequency and perfmargunc, is used often in the
descriptions below.

Basic Syntax with Fourth Output Argument

A fourth output argument yields more specialized information, including sensitivities and frequency-
by-frequency information.

[perfmarg,perfmargunc,Report,Info] = robustperf(usys) 

In addition to the first 3 output arguments, described previously, Info is a structure with the
following fields:

Field Description
Sensitivity A struct with M fields, field names are names of uncertain

elements of usys. Values of fields are positive and contain the local
sensitivity of the overall Stability Margin to that element's
uncertainty range. For instance, a value of 25 indicates that if the
uncertainty range is enlarged by 8%, then the stability margin
should drop by about 2% (25% of 8). If the Sensitivity property
of the robustperfOptions object is 'off', the values are set to
NaN.

Frequency N-by-1 frequency vector associated with analysis.
BadUncertainValues N-by-1 struct array containing the worst uncertain element values

at each frequency.
MussvBnds A 1-by-2 frd, with upper and lower bounds from mussv. The (1,1)

entry is the µ-upper bound (corresponds to
perfmarg.LowerBound) and the (1,2) entry is the µ-lower bound
(for perfmarg.UpperBound).

MussvInfo Structure of compressed data from mussv.

Specifying Additional Options

Use robustperfOptions to specify additional options for the robustperf computation. For
example, you can control what is displayed during the computation, turn the sensitivity computation
on or off, set the step size in the sensitivity computation, or control the option argument used in the
underlying call to mussv. For example, you can turn the display on and turn off the sensitivity by
executing

opt = robustperfOptions('Sensitivity','off','Display','on'); 
[PerfMarg,Destabunc,Report,Info] = robustperf(usys,opt) 

See the robustperfOptions reference page for more information about available options.
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Limitations
Because the calculation is carried out with a frequency gridding, it is possible (likely) that the true
critical frequency is missing from the frequency vector used in the analysis. This is similar to the
problem in robuststab. However, in comparing to robuststab, the problem in robustperf is less
acute. The robust performance margin, considered a function of problem data and frequency, is
typically a continuous function (unlike the robust stability margin, described in “Getting Reliable
Estimates of Robustness Margins”). Hence, in robust performance margin calculations, increasing the
density of the frequency grid will always increase the accuracy of the answers, and in the limit,
answers arbitrarily close to the actual answers are obtainable with finite frequency grids.

Algorithms
A rigorous robust performance analysis consists of two steps:

1 Verify that the nominal system is stable.
2 Robust performance analysis on an augmented system.

The algorithm in robustperf follows this in spirit, with the following limitations:

• If usys is a uss object, then robustperf explicitly checks the stability of the nominal value.
However, if usys is a ufrd model, robustperf instead assumes that the nominal value is stable,
and does not perform this check.

• The exact performance margin is guaranteed to be no larger than UpperBound (some uncertain
elements associated with this magnitude cause instability – one instance is returned in the
structure perfmargunc). The instability created by perfmargunc occurs at the frequency value
in CriticalFrequency.

• Similarly, the exact performance margin is guaranteed to be no smaller than LowerBound.

See Also
mussv | norm | robstab | robgain | actual2normalized | wcgain | wcdiskmargin

Introduced before R2006a
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robustperfOptions
(Not recommended) Option set for robustperf

Note robustperfOptions is not recommended. Use robOptions instead.

Syntax
options = robustperfOptions
options = robustperfOptions(Name,Value,...)

Description
options = robustperfOptions returns the default option set for the robustperf command.

options = robustperfOptions(Name,Value,...) creates an option set with the options
specified by one or more Name,Value pair arguments.

Input Arguments
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

robustperfOptions takes the following Name arguments:

Display

Specifies whether robustperf displays progress of mussv computations.

• 'off' — Do not display progress.
• 'on' — Display progress. This setting overrides the silent ('s') option in the Mussv option.

Default: 'off'

Sensitivity

Specifies whether robustperf computes the sensitivity of the performance margin with respect to
each individual uncertain element. This element-by-element sensitivity provides an indication of
which elements the performance margin is most sensitive to. Turning off the element-by-element
sensitivity calculation speeds up robustperf.

• 'on' — Compute the sensitivity for each uncertain element.
• 'off' — Do not compute the sensitivity for each uncertain element.

Default: 'on'
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VaryUncertainty

Percentage variation of uncertainty for computing sensitivity. The sensitivity estimate uses a finite
difference calculation.

Default: 25

Mussv

Options for the mussv calculation that robustperf performs. See mussv for the available options.

Default: '' (default behavior of mussv)

Output Arguments
options

Option set containing the specified options for the robustperf command.

Examples
Create an options set for a robustperf calculation that displays the progress of the mussv
calculation. Also, turn off the element-by-element sensitivity calculation.

 options = robustperfOptions('Display','on','Sensitivity','off');

Alternatively, use dot notation to set the values of options.

options = robustperfOptions;
options.Display = 'on';
options.Sensitivity = 'off';

See Also
robOptions

Introduced in R2011b
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robuststab
(Not recommended) Calculate robust stability margins of uncertain multivariable system

Note robuststab is not recommended. Use robstab instead.

Syntax
[stabmarg,destabunc,report,info] = robuststab(sys)

[stabmarg,destabunc,report,info] = robuststab(sys,opt)

Description
A nominally stable uncertain system is generally unstable for specific values of its uncertain
elements. Determining the values of the uncertain elements closest to their nominal values for which
instability occurs is a robust stability calculation.

If the uncertain system is stable for all values of uncertain elements within their allowable ranges
(ranges for ureal, norm bound or positive-real constraint for ultidyn, radius for ucomplex,
weighted ball for ucomplexm), the uncertain system is robustly stable. Conversely, if there is a
combination of element values that cause instability, and all lie within their allowable ranges, then the
uncertain system is not robustly stable.

robuststab computes the margin of stability robustness for an uncertain system. A stability
robustness margin greater than 1 means that the uncertain system is stable for all values of its
modeled uncertainty. A stability robustness margin less than 1 implies that certain allowable values of
the uncertain elements, within their specified ranges, lead to instability.

Numerically, a margin of 0.5 (for example) implies two things: the uncertain system remains stable
for all values of uncertain elements that are less than 0.5 normalized units away from their nominal
values and, there is a collection of uncertain elements that are less than or equal to 0.5 normalized
units away from their nominal values that results in instability. Similarly, a margin of 1.3 implies that
the uncertain system remains stable for all values of uncertain elements up to 30% outside their
modeled uncertain ranges. See actual2normalized for converting between actual and normalized
deviations from the nominal value of an uncertain element.

As with other uncertain-system analysis tools, only bounds on the exact stability margin are
computed. The exact robust stability margin is guaranteed to lie in between these upper and lower
bounds.

The computation used in robuststab is a frequency-domain calculation, which determines whether
poles can migrate (due to variability of the uncertain atoms) across the stability boundary (imaginary
axis for continuous-time, unit circle for discrete-time). Coupled with stability of the nominal system,
determining that no migration occurs constitutes robust stability. If the input system sys is a ufrd,
then the analysis is performed on the frequency grid within the ufrd. Note that the stability of the
nominal system is not verified by the computation. If the input system sys is a uss, then the stability
of the nominal system is first checked, an appropriate frequency grid is generated (automatically),
and the analysis performed on that frequency grid. In all discussion that follows, N denotes the
number of points in the frequency grid.
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Basic Syntax

Suppose sys is a ufrd or uss with M uncertain elements. The results of

[stabmarg,destabunc,Report] = robuststab(sys) 

are that stabmarg is a structure with the following fields

Field Description
LowerBound Lower bound on stability margin, positive scalar. If greater than 1, then the

uncertain system is guaranteed stable for all values of the modeled
uncertainty. If the nominal value of the uncertain system is unstable, then
stabmarg.UpperBound and stabmarg.LowerBound both equal 0.

UpperBound Upper bound on stability margin, positive scalar. If less than 1, the
uncertain system is not stable for all values of the modeled uncertainty.

DestabilizingFrequency The critical value of frequency at which instability occurs, with uncertain
elements closest to their nominal values. At a particular value of uncertain
elements (see destabunc below), the poles migrate across the stability
boundary (imaginary-axis in continuous-time systems, unit-disk in discrete-
time systems) at the frequency given by DestabilizingFrequency.

destabunc is a structure of values of uncertain elements, closest to nominal, that cause instability.
There are M field names, which are the names of uncertain elements of sys. The value of each field is
the corresponding value of the uncertain element, such that when jointly combined, lead to instability.
The command pole(usubs(sys,destabunc)) shows the instability. If A is an uncertain element of
sys, then

actual2normalized(destabunc.A,sys.Uncertainty.A) 

will be less than or equal to UpperBound, and for at least one uncertain element of sys, this
normalized distance will be equal to UpperBound, proving that UpperBound is indeed an upper
bound on the robust stability margin.

Report is a text description of the arguments returned by robuststab.

If sys is an array of uncertain models, the outputs are struct arrays whose entries correspond to each
model in the array.

Examples
Construct a feedback loop with a second-order plant and a PID controller with approximate
differentiation. The second-order plant has frequency-dependent uncertainty, in the form of additive
unmodeled dynamics, introduced with an ultidyn object and a shaping filter.

robuststab is used to compute the stability margins of the closed-loop system with respect to the
plant model uncertainty.

P = tf(4,[1 .8 4]); 
delta = ultidyn('delta',[1 1],'SampleStateDimension',5); 
Pu = P + 0.25*tf([1],[.15 1])*delta; 
C = tf([1 1],[.1 1]) + tf(2,[1 0]); 
S = feedback(1,Pu*C); 
[stabmarg,destabunc,report,info] = robuststab(S); 
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You can view the stabmarg variable.

stabmarg 
stabmarg = 
                UpperBound: 0.8181 
                LowerBound: 0.8181 
    DestabilizingFrequency: 9.1321 

As the margin is less than 1, the closed-loop system is not stable for plant models covered by the
uncertain model Pu. There is a specific plant within the uncertain behavior modeled by Pu (actually
about 82% of the modeled uncertainty) that leads to closed-loop instability, with the poles migrating
across the stability boundary at 9.1 rads/s.

The report variable is specific, giving a plain-language version of the conclusion.

report 
report = 
Uncertain System is NOT robustly stable to modeled uncertainty. 
 -- It can tolerate up to 81.8% of modeled uncertainty.
 -- A destabilizing combination of 81.8% the modeled uncertainty
exists, causing an instability at 9.13 rad/s.
 -- Sensitivity with respect to uncertain element ... 
   'delta' is 100%.  Increasing 'delta' by 25% leads to a
25% decrease in the margin. 

Because the problem has only one uncertain element, the stability margin is completely determined
by this element, and hence the margin exhibits 100% sensitivity to this uncertain element.

You can verify that the destabilizing value of delta is indeed about 0.82 normalized units from its
nominal value.

actual2normalized(S.Uncertainty.delta,destabunc.delta)
ans =
    0.8181

Use usubs to substitute the specific value into the closed-loop system. Verify that there is a closed-
loop pole near j9.1, and plot the unit-step response of the nominal closed-loop system, as well as the
unstable closed-loop system.

Sbad = usubs(S,destabunc); 
pole(Sbad) 
ans = 
  1.0e+002 * 
  -3.2318          
  -0.2539          
  -0.0000 + 0.0913i 
  -0.0000 - 0.0913i 
  -0.0203 + 0.0211i 
  -0.0203 - 0.0211i 
  -0.0106 + 0.0116i 
  -0.0106 - 0.0116i 
step(S.NominalValue,'r--',Sbad,'g',4); 

Finally, as an ad-hoc test, set the gain bound on the uncertain delta to 0.81 (slightly less than the
stability margin). Sample the closed-loop system at 100 values, and compute the poles of all these
systems.
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S.Uncertainty.delta.Bound = 0.81; 
S100 = usample(S,100); 
p100 = pole(S100); 
max(real(p100(:))) 
ans = 
 -6.4647e-007 

As expected, all poles have negative real parts.

Basic Syntax with Fourth Output Argument

A fourth output argument yields more specialized information, including sensitivities and frequency-
by-frequency information.

[StabMarg,Destabunc,Report,Info] = robuststab(sys) 

In addition to the first 3 output arguments, described previously, Info is a structure with the
following fields

Field Description
Sensitivity A struct with M fields, Field names are names of uncertain elements of

sys. Values of fields are positive, each the local sensitivity of the overall
stability margin to that element's uncertainty range. For instance, a value of
25 indicates that if the uncertainty range is enlarged by 8%, then the
stability margin should drop by about 2% (25% of 8). If the Sensitivity
property of the robuststabOptions object is 'off', the values are set to
NaN.

Frequency N-by-1 frequency vector associated with analysis.
BadUncertainValues N-by-1 struct array containing the destabilizing uncertain element values at

each frequency.
MussvBnds A 1-by-2 frd, with upper and lower bounds from mussv. The (1,1) entry is

the µ-upper bound (corresponds to stabmarg.LowerBound) and the (1,2)
entry is the µ-lower bound (for stabmarg.UpperBound).

MussvInfo Structure of compressed data from mussv.

Specifying Additional Options

Use robuststabOptions to specify additional options for the robuststab computation. For
example, you can control what is displayed during the computation, turning the sensitivity
computation on or off, set the step-size in the sensitivity computation, or control the option argument
used in the underlying call to mussv. For instance, you can turn the display on, and the sensitivity
calculation off by executing

opt = robuststabOptions('Sensitivity','off','Display','on'); 
[StabMarg,Destabunc,Report,Info] = robuststab(sys,opt) 

See the robuststabOptions reference page for more information about available options.

Limitations
Under most conditions, the robust stability margin at each frequency is a continuous function of the
problem data at that frequency. Because the problem data, in turn, is a continuous function of
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frequency, it follows that finite frequency grids are usually adequate in correctly assessing robust
stability bounds, assuming the frequency grid is dense enough.

Nevertheless, there are simple examples that violate this. In some problems, the migration of poles
from stable to unstable only occurs at a finite collection of specific frequencies (generally unknown to
you). Any frequency grid that excludes these critical frequencies (and almost every grid will exclude
them) will result in undetected migration and misleading results, namely stability margins of ∞.

See “Getting Reliable Estimates of Robustness Margins” for more information about circumventing
the problem in an engineering-relevant fashion.

Algorithms
A rigorous robust stability analysis consists of two steps:

1 Verify that the nominal system is stable;
2 Verify that no poles cross the stability boundary as the uncertain elements vary within their

ranges.

Because the stability boundary is also associated with the frequency response, the second step can be
interpreted (and carried out) as a frequency domain calculation. This amounts to a classical µ-
analysis problem.

The algorithm in robuststab follows this in spirit, with the following limitations.

• If sys is a uss object, then the first requirement of stability of nominal value is explicitly checked
within robuststab. However, if sys is an ufrd, then the verification of nominal stability from the
nominal frequency response data is not performed, and is instead assumed.

• In the second step (monitoring the stability boundary for the migration of poles), rather than
check all points on stability boundary, the algorithm only detects migration of poles across the
stability boundary at the frequencies in info.Frequency.

See “Limitations” on page 1-465 for information about issues related to migration detection.

The exact stability margin is guaranteed to be no larger than UpperBound (some uncertain elements
associated with this magnitude cause instability – one instance is returned in the structure
destabunc). The instability created by destabunc occurs at the frequency value in
DestabilizingFrequency.

Similarly, the exact stability margin is guaranteed to be no smaller than LowerBound. In other words,
for all modeled uncertainty with magnitude up to LowerBound, the system is guaranteed stable.
These bounds are derived using the upper bound for the structured singular value, which is
essentially optimally-scaled, small-gain theorem analysis.

See Also
diskmargin | mussv | robgain | robstab | wcgain | wcdiskmargin

Introduced before R2006a
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robuststabOptions
(Not recommended) Option set for robuststab

Note robuststabOptions is not recommended. Use robOptions instead.

Syntax
options = robuststabOptions
options = robuststabOptions(Name,Value,...)

Description
options = robuststabOptions returns the default option set for the robuststab command.

options = robuststabOptions(Name,Value,...) creates an option set with the options
specified by one or more Name,Value pair arguments.

Input Arguments
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

robuststabOptions takes the following Name arguments:

Display

Specifies whether robuststab displays progress of mussv computations.

• 'off' — Do not display progress.
• 'on' — Display progress. This setting overrides the silent ('s') option in the Mussv option.

Default: 'off'

Sensitivity

Specifies whether robuststab computes the sensitivity of the stability margin with respect to each
individual uncertain element. This element-by-element sensitivity provides an indication of which
elements the stability margin is most sensitive to. Turning off the element-by-element sensitivity
calculation speeds up robuststab.

• 'on' — Compute the sensitivity for each uncertain element.
• 'off' — Do not compute the sensitivity for each uncertain element.

Default: 'on'
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VaryUncertainty

Percentage variation of uncertainty for computing sensitivity. The sensitivity estimate uses a finite
difference calculation.

Default: 25

Mussv

Options for the mussv calculation that robustperf performs. See mussv for the available options.

Default: '' (default behavior of mussv)

Output Arguments
options

Option set containing the specified options for the robuststab command.

Examples
Create an options set for a robuststab calculation that displays the progress of the mussv
calculation. Also, turn off the element-by-element sensitivity calculation.

 options = robuststabOptions('Display','on','Sensitivity','off');

Alternatively, use dot notation to set the values of options.

options = robuststabOptions;
options.Display = 'on';
options.Sensitivity = 'off';

See Also
robOptions

Introduced in R2011b
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schurmr
Balanced model truncation via Schur method

Syntax
GRED = schurmr(G)

GRED = schurmr(G,order)

[GRED,redinfo] = schurmr(G,key1,value1,...)

[GRED,redinfo] = schurmr(G,order,key1,value1,...)

Description
schurmr returns a reduced order model GRED of G and a struct array redinfo containing the error
bound of the reduced model and Hankel singular values of the original system.

The error bound is computed based on Hankel singular values of G. For a stable system Hankel
singular values indicate the respective state energy of the system. Hence, reduced order can be
directly determined by examining the system Hankel SV's, σι.

With only one input argument G, the function will show a Hankel singular value plot of the original
model and prompt for model order number to reduce.

This method guarantees an error bound on the infinity norm of the additive error ∥ G-GRED ∥∞ for
well-conditioned model reduced problems [1]:

G− Gred ∞ ≤ 2 ∑
k + 1

n
σi

This table describes input arguments for schurmr.

Argument Description
G LTI model to be reduced (without any other inputs will plot its Hankel singular

values and prompt for reduced order).
ORDER (Optional) an integer for the desired order of the reduced model, or optionally a

vector packed with desired orders for batch runs

A batch run of a serial of different reduced order models can be generated by specifying order =
x:y, or a vector of integers. By default, all the anti-stable part of a system is kept, because from
control stability point of view, getting rid of unstable state(s) is dangerous to model a system.

'MaxError' can be specified in the same fashion as an alternative for ' ORDER '. In this case,
reduced order will be determined when the sum of the tails of the Hankel sv's reaches the
'MaxError'.
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Argument Value Description
'MaxError' A real number or a

vector of different
errors

Reduce to achieve H∞ error.

When present, 'MaxError' overrides ORDER input.
'Weights' {Wout,Win} cell

array
Optimal 1x2 cell array of LTI weights Wout (output) and
Win (input); default is both identity; Weights must be
invertible.

'Display' 'on' or 'off' Display Hankel singular plots (default 'off').
'Order' Integer, vector or

cell array
Order of reduced model. Use only if not specified as 2nd
argument.

Weights on the original model input and/or output can make the model reduction algorithm focus on
some frequency range of interests. But weights have to be stable, minimum phase and invertible.

This table describes output arguments.

Argument Description
GRED LTI reduced order model. Becomes multi-dimensional array when input is a

serial of different model order array.
REDINFO A STRUCT array with 3 fields:

• REDINFO.ErrorBound
• REDINFO.StabSV
• REDINFO.UnstabSV

G can be stable or unstable. G and GRED can be either continuous or discrete.

Examples
Given a continuous or discrete, stable or unstable system, G, the following commands can get a set of
reduced order models based on your selections:

rng(1234,'twister'); 
G = rss(30,5,4);
[g1, redinfo1] = schurmr(G); % display Hankel SV plot
                             % and prompt for order (try 15:20)
[g2, redinfo2] = schurmr(G,20); 
[g3, redinfo3] = schurmr(G,[10:2:18]);
[g4, redinfo4] = schurmr(G,'MaxError',[0.01, 0.05]);
for i = 1:4
     figure(i); eval(['sigma(G,g' num2str(i) ');']);
end

Algorithms
Given a state space (A,B,C,D) of a system and k, the desired reduced order, the following steps will
produce a similarity transformation to truncate the original state-space system to the kth order
reduced model [16].

1 Find the controllability and observability grammians P and Q.
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2 Find the Schur decomposition for PQ in both ascending and descending order, respectively,

VA
TPQVA =

λ1 … …
0 … …
0 0 λn

VD
TPQVD =

λn … …
0 … …
0 0 λ1

3 Find the left/right orthonormal eigen-bases of PQ associated with the kth big Hankel singular
values.

VA = [VR, SMALL, VL, BIG]
︷

4 Find the SVD of (VT
L,BIG VR,BIG) = U Σ VT

VD = [VR, BIG
︷

, VL, SMALL]
5 Form the left/right transformation for the final kth order reduced model

        SL,BIG = V L,BIG UΣ(1:k,1:k)–½

        SR,BIG = VR,BIGVΣ(1:k,1:k)–½

6 Finally,

A B
C D

=
SL, BIG

T ASR, BIG SL, BIG
T B

CSR, BIG D

The proof of the Schur balance truncation algorithm can be found in [2].

References

[1] K. Glover, “All Optimal Hankel Norm Approximation of Linear Multivariable Systems, and Their L∝-
error Bounds,” Int. J. Control, vol. 39, no. 6, pp. 1145-1193, 1984.

[2] M. G. Safonov and R. Y. Chiang, “A Schur Method for Balanced Model Reduction,” IEEE Trans. on
Automat. Contr., vol. 34, no. 7, July 1989, pp. 729-733.

See Also
reduce | balancmr | bstmr | ncfmr | hankelmr | hankelsv

Introduced before R2006a
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sdhinfnorm
Compute L2 norm of continuous-time system in feedback with discrete-time system

Syntax
[gaml,gamu] = sdhinfnorm(sdsys,k)

[gaml,gamu] = sdhinfnorm(sdsys,k,delay)

[gaml,gamu] = sdhinfnorm(sdsys,k,delay,tol)

Description
[gaml,gamu] = sdhinfnorm(sdsys,k) computes the L2 induced norm of a continuous-time LTI
plant, sdsys, in feedback with a discrete-time controller, k, connected through an ideal sampler and
a zero-order hold (see figure below). sdsys must be strictly proper, such that the constant feedback
gain must be zero. The outputs, gamu and gaml, are upper and lower bounds on the induced L2 norm
of the sampled-data closed-loop system.

[gaml,gamu] = sdhinfnorm(sdsys,k,h,delay) includes the input argument delay. delay is
a nonnegative integer associated with the number of computational delays of the controller. The
default value of the delay is 0.

[gaml,gamu] = sdhinfnorm(sdsys,k,h,delay,tol) includes the input argument, tol, which
defines the difference between upper and lower bounds when search terminates. The default value of
tol is 0.001.

Examples
Consider an open-loop, continuous-time transfer function p = 30/s(s+30) and a continuous-time
controller k = 4/(s+4). The closed-loop continuous-time system has a peak magnitude across
frequency of 1.

p = ss(tf(30,[1 30])*tf([1],[1 0])); 
k = ss(tf(4,[1 4])); 
cl = feedback(p,k); 
norm(cl,'inf') 
ans = 
     1 

Initially the controller is to be implemented at a sample rate of 1.5 Hz. The sample-data norm of the
closed-loop system with the discrete-time controller is 1.0.
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kd = c2d(k,0.75,'zoh'); 
[gu,gl] = sdhinfnorm([1; 1]*p*[1 1],-kd); 
[gu gl] 
ans = 
    3.7908    3.7929 

Because of the large difference in norm between the continuous-time and sampled-data closed-loop
system, the sample rate of the controller is increased from 1.5 Hz to 5 Hz. The sample-data norm of
the new closed-loop system is 3.79.

kd = c2d(k,0.2,'zoh'); 
[gu,gl] = sdhinfnorm([1; 1]*p*[1 1],-kd); 
[gu gl] 
ans = 
    1.0044    1.0049 

Algorithms
sdhinfnorm uses variations of the formulas described in the Bamieh and Pearson paper to obtain an
equivalent discrete-time system. (These variations are done to improve the numerical conditioning of
the algorithms.) A preliminary step is to determine whether the norm of the continuous-time system
over one sampling period without control is less than the given value. This requires a search and is,
computationally, a relatively expensive step.

References
Bamieh, B.A., and J.B. Pearson, “A General Framework for Linear Periodic Systems with Applications
to Sampled-Data Control,” IEEE Transactions on Automatic Control, Vol. AC–37, 1992, pp. 418-435.

See Also
gapmetric | hinfsyn | norm | sdhinfsyn | sdlsim

Introduced before R2006a
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sdhinfsyn
Compute H∞ controller for sampled-data system

Syntax
[K,GAM]=sdhinfsyn(P,NMEAS,NCON)

[K,GAM]=sdhinfsyn(P,NMEAS,NCON, KEY1,VALUE1,KEY2,VALUE2,...)

Description
sdhinfsyn controls a continuous-time LTI system P with a discrete-time controller K. The
continuous-time LTI plant P has a state-space realization partitioned as follows:

P =
A B1 B2
C1 0 0
C2 0 0

where the continuous-time disturbance inputs enter through B1, the outputs from the controller are
held constant between sampling instants and enter through B2, the continuous-time errors (to be kept
small) correspond to the C1 partition, and the output measurements that are sampled by the
controller correspond to the C2 partition. B2 has column size ncon and C2 has row size nmeas. Note
that the D matrix must be zero.

sdhinfsyn synthesizes a discrete-time LTI controller K to achieve a given norm (if possible) or find
the minimum possible norm to within tolerance TOLGAM.

Similar to hinfsyn, the function sdhinfsyn employs a γ iteration. Given a high and low value of γ,
GMAX and GMIN, the bisection method is used to iterate on the value of γ in an effort to approach the
optimal H∞ control design. If GMAX = GMIN, only one γ value is tested. The stopping criterion for the
bisection algorithm requires that the relative difference between the last γ value that failed and the
last γ value that passed be less than TOLGAM.

Input arguments

P LTI plant
NMEAS Number of measurements output to controller
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NCON Number of control inputs

Optional input arguments (KEY, VALUE) pairs are similar to hinfsyn, but with additional KEY values
'Ts' and 'DELAY'.

KEY VALUE Meaning
'GMAX' real Initial upper bound on GAM (default=Inf)
'GMIN' real Initial lower bound on GAM (default=0)
'TOLGAM' real Relative error tolerance for GAM (default=.01)
'Ts' real (Default=1) sample time of the controller to be designed
'DELAY' integer (Default=0) a nonnegative integer giving the number of

sample periods delay for the control computation
'DISPLAY' 'off'

'on'

(Default) no command window display, or the command
window displays synthesis progress information

Output arguments

K H∞ controller
GAM Final γ value of H∞ cost achieved

Algorithms
sdhinfsyn uses a variation of the formulas described in the Bamieh and Pearson paper [1] to obtain
an equivalent discrete-time system. (This is done to improve the numerical conditioning of the
algorithms.) A preliminary step is to determine whether the norm of the continuous-time system over
one sampling period without control is less than the given γ-value. This requires a search and is
computationally a relatively expensive step.

References

[1] Bamieh, B.A., and J.B. Pearson, “A General Framework for Linear Periodic Systems with
Applications to Sampled-Data Control,” IEEE Transactions on Automatic Control, Vol. AC–37,
1992, pp. 418-435.

See Also
norm | hinfsyn | sdhinfnorm

Introduced before R2006a

 sdhinfsyn

1-475



sdlsim
Time response of sampled-data feedback system

Syntax
sdlsim(p,k,w,t,tf)

sdlsim(p,k,w,t,tf,x0,z0)

sdlsim(p,k,w,t,tf,x0,z0,int)

[vt,yt,ut,t] = sdlsim(p,k,w,t,tf)

[vt,yt,ut,t] = sdlsim(p,k,w,t,tf,x0,z0,int)

Description
sdlsim(p,k,w,t,tf) plots the time response of the hybrid feedback system. lft(p,k), is forced
by the continuous input signal described by w and t (values and times, as in lsim). p must be a
continuous-time LTI system, and k must be discrete-time LTI system with a specified sample time (the
unspecified sample time –1 is not allowed). The final time is specified with tf.

sdlsim(p,k,w,t,tf,x0,z0) specifies the initial state vector x0 of p, and z0 of k, at time t(1).

sdlsim(p,k,w,t,tf,x0,z0,int) specifies the continuous-time integration step size int. sdlsim
forces int = (k.Ts)/N int where N>4 is an integer. If any of these optional arguments is omitted,
or passed as empty matrices, then default values are used. The default value for x0 and z0 is zero.
Nonzero initial conditions are allowed for p (and/or k) only if p (and/or k) is an ss object.

If p and/or k is an LTI array with consistent array dimensions, then the time simulation is performed
pointwise across the array dimensions.

[vt,yt,ut,t] = sdlsim(p,k,w,t,tf) computes the continuous-time response of the hybrid
feedback system lft(p,k) forced by the continuous input signal defined by w and t (values and
times, as in lsim). p must be a continuous-time system, and k must be discrete-time, with a specified
sample time (the unspecified sample time –1 is not allowed). The final time is specified with tf. The
outputs vt, yt and ut are 2-by-1 cell arrays: in each the first entry is a time vector, and the second
entry is the signal values. Stored in this manner, the signal vt is plotted by using one of the following
commands:

plot(vt{1},vt{2})
plot(vt{:}) 

Signals yt and ut are respectively the input to k and output of k.

If p and/or k are LTI arrays with consistent array dimensions, then the time simulation is performed
pointwise across the array dimensions. The outputs are 2-by-1-by-array dimension cell arrays. All
responses can be plotted simultaneously, for example, plot(vt).

[vt,yt,ut,t] = sdlsim(p,k,w,t,tf,x0,z0,int) The optional arguments are int (integration
step size), x0 (initial condition for p), and z0 (initial condition for k). sdlsim forces int =
(k.Ts)/N, where N>4 is an integer. If any of these arguments is omitted, or passed as empty
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matrices, then default values are used. The default value for x0 and z0 is zero. Nonzero initial
conditions are allowed for p (and/or k) only if p (and/or k) is an ss object.

Examples

Time Response of Continuous Plant with Discrete Controller

To illustrate the use of sdlsim, consider the application of a discrete controller to a plant with an
integrator and near integrator. A continuous plant and a discrete controller are created. A sample-
and-hold equivalent of the plant is formed and the discrete closed-loop system is calculated.
Simulating this gives the system response at the sample points. sdlsim is then used to calculate the
intersample behavior.

P = tf(1,[1, 1e-5,0]); 
T = 1.0/20; 
C = ss([-1.5 T/4; -2/T -.5],[ .5 2;1/T 1/T],... 
   [-1/T^2  -1.5/T], [1/T^2  0],T); 
Pd = c2d(P,T,'zoh');

Use connect to construct the interconnected feedback system.

C.InputName = {'ref','y'};
C.OutputName = 'u';
Pd.Inputname = 'u';
Pd.OutputName = 'y';
dclp = connect(C,Pd,'ref','y');

Use step to simulate the digital step response.

[yd,td] = step(dclp,20*T);

Set up the continuous interconnection and calculate the sampled data response with sdlsim.

M = [0,1;1,0;0,1]*blkdiag(1,P); 
t = [0:.01:1]'; 
u = ones(size(t)); 
y1 = sdlsim(M,C,u,t); 
plot(td,yd,'r*',y1{:},'b-') 
axis([0,1,0,1.5]) 
xlabel('Time: seconds') 
title('Step response: discrete (*) and continuous')
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You can see the effect of a nonzero initial condition in the continuous-time system. Note how
examining the system at only the sample points will underestimate the amplitude of the overshoot.

y2 = sdlsim(M,C,u,t,1,0,[0.25;0]); 
plot(td,yd,'r*',y1{:},'b-',y2{:},'g--') 
axis([0,1,0,1.5]) 
xlabel('Time: seconds') 
title('Step response: nonzero initial condition')
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Finally, you can examine the effect of a sinusoidal disturbance at the continuous-time plant output.
This controller is not designed to reject such a disturbance and the system does not contain
antialiasing filters. Simulating the effect of antialiasing filters is easily accomplished by including
them in the continuous interconnection structure.

M2 = [0,1,1;1,0,0;0,1,1]*blkdiag(1,1,P); 
t = [0:.001:1]'; 
dist = 0.1*sin(41*t); 
u = ones(size(t)); 
[y3,meas,act] = sdlsim(M2,C,[u dist],t,1); 
plot(y3{:},'-',t,dist,'b--',t,u,'g-.') 
xlabel('Time: seconds') 
title('Step response: disturbance (dashed) and  output (solid)')
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Algorithms
sdlsim oversamples the continuous-time, N times the sample rate of the controller k.

See Also
gapmetric | hinfsyn | norm | sdhinfnorm | sdhinfsyn | connect

Introduced before R2006a
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sectf
State-space sector bilinear transformation

Syntax
[G,T] = sectf(F,SECF,SECG)

Description
[G,T] = sectf(F,SECF,SECG) computes a linear fractional transform T such that the system
lft(F,K) is in sector SECF if and only if the system lft(G,K) is in sector SECG where

G=lft(T,F,NU,NY)

where NU and NY are the dimensions of uT2 and yT2, respectively—see the following figure.

Sector transform G=lft(T,F,NU,NY).

sectf are used to transform general conic-sector control system performance specifications into
equivalent H∞-norm performance specifications.

Input Arguments
F LTI state-space plant  
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Input Arguments
SECG,
SECF:

Conic Sector:  

 [-1,1] or [-1;1] y 2 ≤ u 2

 [0,Inf] or [0;Inf] 0 ≤ Re y ∗ u
 [A,B] or [A;B] 0 ≥ Re y − Au ∗ y − Bu
 [a,b] or [a;b] 0 ≥ Re y − diag(a)u ∗ y − diag(b)u
 S 0 ≥ Re S11u + S12y ∗ S21u + S22y
 S 0 ≥ Re S11u + S12y ∗ S21u + S22y

where A,B are scalars in [–∞, ∞] or square matrices; a,b are vectors; S=[S11 S12;S21,S22] is a
square matrix whose blocks S11,S12,S21,S22 are either scalars or square matrices; S is a two-port
system S=mksys(a,b1,b2,...,'tss') with transfer function

S(s) =
S11(s) S12(s)
S21(s) S22(s)

Output
Arguments

Description

G Transformed plant G(s)=lftf(T,F)
T LFT sector transform, maps conic sector SECF into conic sector SECG

Output Variables  
G The transformed plant G(s) = lftf(T,F):
T The linear fractional transformation T(s) = T

Examples
The statement G(jω) inside sector[–1, 1] is equivalent to the H∞ inequality

sup
ω

σ G( jω) = G ∞ ≤ 1

Given a two-port open-loop plant P(s) := P, the command P1 = sectf(P,[0,Inf],
[-1,1])computes a transformed P1(s):= P1 such that if lft(G,K) is inside sector[–1, 1] if and only
if lft(F,K) is inside sector[0, ∞]. In other words, norm(lft(G,K), inf)<1 if and only if
lft(F,K) is strictly positive real. See “Example of Sector Transform” on page 1-483.
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Sector Transform Block Diagram

Here is a simple example of the sector transform.

P(s) = 1
s + 1 ∈ sector −1, 1 P1(s) = s + 2

2 ∈ sector 0,∞ .

You can compute this by simply executing the following commands:

P = ss(tf(1,[1 1])); 
P1 = sectf(P,[-1,1],[0,Inf]);

The Nyquist plots for this transformation are depicted in “Example of Sector Transform” on page 1-
483. The condition P1(s) inside [0, ∞] implies that P1(s) is stable and P1(jω) is positive real, i.e.,

P1
∗( jω) + P1( jω) ≥ 0   ∀ω

Example of Sector Transform

Limitations
A well-posed conic sector must have det(B–A)≠ 0 or

det
s11 s12
s21 s22

≠ 0.

Also, you must have dim(uF1) = dim(yF1) since sectors are only defined for square systems.

Algorithms
sectf uses the generalization of the sector concept of [3] described by [1]. First the sector input
data Sf= SECF and Sg=SECG is converted to two-port state-space form; non-dynamical sectors are
handled with empty a, b1, b2, c1, c2 matrices. Next the equation
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Sg(s)
ug1
yg1

= Sf (s)
uf1
yf1

is solved for the two-port transfer function T(s) from ug1yf1 to uf1yg1. Finally, the function lftf is
used to compute G(s) as G = lftf(T,F).

References

[1] Safonov, M.G., Stability and Robustness of Multivariable Feedback Systems. Cambridge, MA: MIT
Press, 1980.

[2] Safonov, M.G., E.A. Jonckheere, M. Verma and D.J.N. Limebeer, “Synthesis of Positive Real
Multivariable Feedback Systems,” Int. J. Control, vol. 45, no. 3, pp. 817-842, 1987.

[3] Zames, G., “On the Input-Output Stability of Time-Varying Nonlinear Feedback Systems ≥— Part I:
Conditions Using Concepts of Loop Gain, Conicity, and Positivity,” IEEE Trans. on Automat.
Contr., AC-11, pp. 228-238, 1966.

See Also
lft | hinfsyn

Introduced before R2006a

1 Functions

1-484



setlmis
Initialize description of LMI system

Syntax
setlmis(lmi0)

Description
Before starting the description of a new LMI system with lmivar and lmiterm, type

setlmis([])

to initialize its internal representation.

To add on to an existing LMI system, use the syntax

setlmis(lmi0)

where lmi0 is the internal representation of this LMI system. Subsequent lmivar and lmiterm
commands will then add new variables and terms to the initial LMI system lmi0.

See Also
getlmis | lmivar | lmiterm | newlmi

Introduced before R2006a
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setmvar
Instantiate matrix variable and evaluate all LMI terms involving this matrix variable

Syntax
mnewsys = setmvar(lmisys,X,Xval)

Description
setmvar sets the matrix variable X with identifier X to the value Xval. All terms involving X are
evaluated, the constant terms are updated accordingly, and X is removed from the list of matrix
variables. A description of the resulting LMI system is returned in newsys.

The integer X is the identifier returned by lmivar when X is declared. Instantiating X with setmvar
does not alter the identifiers of the remaining matrix variables.

The function setmvar is useful to freeze certain matrix variables and optimize with respect to the
remaining ones. It saves time by avoiding partial or complete redefinition of the set of LMI
constraints.

Examples
Consider the system

x˙ = Ax + Bu

and the problem of finding a stabilizing state-feedback law u = Kx where K is an unknown matrix.

By the Lyapunov Theorem, this is equivalent to finding P > 0 and K such that

(A + BK)P + P(A + BKT) + I < 0.

With the change of variable Y := KP, this condition reduces to the LMI

AP + PAT + BY + YTBT + I < 0.

This LMI is entered by the commands

n = size(A,1)                 % number of states 
ncon = size(B,2)              % number of inputs

setlmis([]) 
P = lmivar(1,[n 1])           % P full symmetric 
Y = lmivar(2,[ncon n])        % Y rectangular

lmiterm([1 1 1 P],A,1,'s')    % AP+PA' 
lmiterm([1 1 1 Y],B,1,'s')    % BY+Y'B' 
lmiterm([1 1 1 0],1)          % I 
lmis = getlmis
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To find out whether this problem has a solution K for the particular Lyapunov matrix P = I, set P to I
by typing

news = setmvar(lmis,P,1)

The resulting LMI system news has only one variable Y = K. Its feasibility is assessed by calling
feasp:

[tmin,xfeas] = feasp(news) 
Y = dec2mat(news,xfeas,Y)

The computed Y is feasible whenever tmin < 0.

See Also
evallmi | delmvar

Introduced before R2006a
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showlmi
Return left and right sides of LMI after evaluation of all variable terms

Syntax
[lhs,rhs] = showlmi(evalsys,n)

Description
For given values of the decision variables, the function evallmi evaluates all variable terms in a
system of LMIs. The left and right sides of the n-th LMI are then constant matrices that can be
displayed with showlmi. If evalsys is the output of evallmi, the values lhs and rhs of these left
and right sides are given by

[lhs,rhs] = showlmi(evalsys,n)

An error is issued if evalsys still contains variable terms.

Examples
See the description of evallmi.

See Also
evallmi | setmvar

Introduced before R2006a
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simplify
Simplify representation of uncertain object

Syntax
B = simplify(A)

B = simplify(A,'full')

B = simplify(A,'basic')

B = simplify(A,'class')

Description
B = simplify(A) performs model-reduction-like techniques to detect and eliminate redundant
copies of uncertain elements. Depending on the result, the class of B may be lower than A. The
AutoSimplify property of each uncertain element in A governs what reduction methods are used.
After reduction, any uncertain element which does not actually affect the result is deleted from the
representation.

B = simplify(A,'full') overrides all uncertain element's AutoSimplify property, and uses
'full' reduction techniques.

B = simplify(A,'basic') overrides all uncertain element's AutoSimplify property, and uses
'basic' reduction techniques.

B = simplify(A,'class') does not perform reduction. However, any uncertain elements in A
with zero occurrences are eliminated, and the class of B may be lower than the class of A.

Examples
Create a simple umat with a single uncertain real parameter. Select specific elements, note that
result remains in class umat. Simplify those same elements, and note that class changes.

p1 = ureal('p1',3,'Range',[2 5]); 
L = [2 p1]; 
L(1) 
UMAT: 1 Rows, 1 Columns 
L(2) 
UMAT: 1 Rows, 1 Columns 
  p1: real, nominal = 3, range = [2  5], 1 occurrence 
simplify(L(1)) 
ans = 
     2 
simplify(L(2)) 
Uncertain Real Parameter: Name p1, NominalValue 3, Range [2  5] 

Create four uncertain real parameters, with a default value of AutoSimplify('basic'), and define
a high order polynomial [1].

m = ureal('m',125000,'Range',[100000 150000]); 
xcg = ureal('xcg',.23,'Range',[.15 .31]); 
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zcg = ureal('zcg',.105,'Range',[0 .21]); 
va = ureal('va',80,'Range',[70 90]); 
cw = simplify(m/(va*va)*va,'full') 
UMAT: 1 Rows, 1 Columns 
   m: real, nominal = 1.25e+005, range = [100000  150000],
1 occurrence 
  va: real, nominal = 80, range = [70  90], 1 occurrence               
cw = m/va; 
fac2 = .16726*xcg*cw*cw*zcg - .17230*xcg*xcg*cw ... 
      -3.9*xcg*cw*zcg - .28*xcg*xcg*cw*cw*zcg ... 
      -.07*xcg*xcg*zcg + .29*xcg*xcg*cw*zcg ... 
      + 4.9*xcg*cw - 2.7*xcg*cw*cw ... 
      +.58*cw*cw - 0.25*xcg*xcg - 1.34*cw ... 
      +100.1*xcg -14.1*zcg - 1.91*cw*cw*zcg ... 
      +1.12*xcg*zcg + 24.6*cw*zcg ... 
      +.45*xcg*xcg*cw*cw - 46.85 
UMAT: 1 Rows, 1 Columns 
    m: real, nominal = 1.25e+005, range = [100000  150000],
18 occurrences 
   va: real, nominal = 80, range = [70  90], 8 occurrences                
  xcg: real, nominal = 0.23, range = [0.15  0.31], 18 occurrences         
  zcg: real, nominal = 0.105, range = [0  0.21], 1 occurrence 

The result of the high-order polynomial is an inefficient representation involving 18 copies of m, 8
copies of va, 18 copies of xcg and 1 copy of zcg. Simplify the expression, using the 'full'
simplification algorithm

fac2s = simplify(fac2,'full') 
UMAT: 1 Rows, 1 Columns 
    m: real, nominal = 1.25e+005, range = [100000  150000],
4 occurrences 
   va: real, nominal = 80, range = [70  90], 4 occurrences               
  xcg: real, nominal = 0.23, range = [0.15  0.31], 2 occurrences         
  zcg: real, nominal = 0.105, range = [0  0.21], 1 occurrence 

which results in a much more economical representation.

Alternatively, change the AutoSimplify property of each parameter to 'full' before forming the
polynomial.

m.AutoSimplify = 'full'; 
xcg.AutoSimplify = 'full'; 
zcg.AutoSimplify = 'full'; 
va.AutoSimplify = 'full'; 

You can form the polynomial, which immediately gives a low order representation.

cw = m/va; 
fac2f = .16726*xcg*cw*cw*zcg - .17230*xcg*xcg*cw ... 
      -3.9*xcg*cw*zcg - .28*xcg*xcg*cw*cw*zcg ... 
      -.07*xcg*xcg*zcg + .29*xcg*xcg*cw*zcg ... 
      + 4.9*xcg*cw - 2.7*xcg*cw*cw ... 
      +.58*cw*cw - 0.25*xcg*xcg - 1.34*cw ... 
      +100.1*xcg -14.1*zcg - 1.91*cw*cw*zcg ... 
      +1.12*xcg*zcg + 24.6*cw*zcg ... 
      +.45*xcg*xcg*cw*cw - 46.85 
UMAT: 1 Rows, 1 Columns 
    m: real, nominal = 1.25e+005, range = [100000  150000],
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4 occurrences 
   va: real, nominal = 80, range = [70  90], 4 occurrences               
  xcg: real, nominal = 0.23, range = [0.15  0.31], 2 occurrences         
  zcg: real, nominal = 0.105, range = [0  0.21], 1 occurrence 

Create two real parameters, da and dx, and a 2-by-3 matrix, ABmat, involving polynomial expressions
in the two real parameters .

da = ureal('da',0,'Range',[-1 1]); 
dx = ureal('dx',0,'Range',[-1 1]); 
a11 = -.32 + da*(.8089 + da*(-.987 + 3.39*da)) + .15*dx; 
a12 = .934 + da*(.0474 - .302*da); 
a21 = -1.15 + da*(4.39 + da*(21.97 - 561*da*da)) ... 
     + dx*(9.65 - da*(55.7 + da*177)); 
a22 = -.66 + da*(1.2 - da*2.27) + dx*(2.66 - 5.1*da); 
b1 = -0.00071 + da*(0.00175 - da*.00308) + .0011*dx; 
b2 = -0.031 + da*(.078 + da*(-.464 + 1.37*da)) + .0072*dx; 
ABmat = [a11 a12 b1;a21 a22 b2] 
UMAT: 2 Rows, 3 Columns 
  da: real, nominal = 0, range = [-1  1], 19 occurrences 
  dx: real, nominal = 0, range = [-1  1], 2 occurrences 

Use 'full' simplification to reduce the complexity of the description.

ABmatsimp = simplify(ABmat,'full') 
UMAT: 2 Rows, 3 Columns 
  da: real, nominal = 0, range = [-1  1], 7 occurrences 
  dx: real, nominal = 0, range = [-1  1], 2 occurrences 

Alternatively, you can set the parameter's AutoSimplify property to 'full'.

da.AutoSimplify = 'full'; 
dx.AutoSimplify = 'full'; 

Now you can rebuild the matrix

a11 = -.32 + da*(.8089 + da*(-.987 + 3.39*da)) + .15*dx; 
a12 = .934 + da*(.0474 - .302*da); 
a21 = -1.15 + da*(4.39 + da*(21.97 - 561*da*da)) ... 
     + dx*(9.65 - da*(55.7 + da*177)); 
a22 = -.66 + da*(1.2 - da*2.27) + dx*(2.66 - 5.1*da); 
b1 = -0.00071 + da*(0.00175 - da*.00308) + .0011*dx; 
b2 = -0.031 + da*(.078 + da*(-.464 + 1.37*da)) + .0072*dx; 
ABmatFull = [a11 a12 b1;a21 a22 b2] 
UMAT: 2 Rows, 3 Columns 
  da: real, nominal = 0, range = [-1  1], 7 occurrences 
  dx: real, nominal = 0, range = [-1  1], 2 occurrences 

Limitations
Multidimensional model reduction and realization theory are only partially complete theories. The
heuristics used by simplify are that - heuristics. The order in which expressions involving uncertain
elements are built up, eg., distributing across addition and multiplication, can affect the details of the
representation (i.e., the number of occurrences of a ureal in an uncertain matrix). It is possible that
simplify's naive methods cannot completely resolve these differences, so one may be forced to
work with “nonminimal” representations of uncertain systems.
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Algorithms
simplify uses heuristics along with one-dimensional model reduction algorithms to partially reduce
the dimensionality of the representation of an uncertain matrix or system.

References

[1] Varga, A. and G. Looye, “Symbolic and numerical software tools for LFT-based low order
uncertainty modeling,” IEEE International Symposium on Computer Aided Control System
Design, 1999, pp. 5-11.

[2] Belcastro, C.M., K.B. Lim and E.A. Morelli, “Computer aided uncertainty modeling for nonlinear
parameter-dependent systems Part II: F-16 example,” IEEE International Symposium on
Computer Aided Control System Design, 1999, pp. 17-23.

See Also
umat | uss | ucomplex | ureal | uss

Introduced before R2006a
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skewdec
Form skew-symmetric matrix

Syntax
X = skewdec(m,n)

Description
X = skewdec(m,n) forms the m-by-m skew-symmetric matrix

0 −(n + 1) −(n + 2) …
(n + 1) 0 −(n + 3) …
(n + 2) (n + 3) 0 …

… … … …
… … … …

This function is useful to define skew-symmetric matrix variables. In this case, set n to the number of
decision variables already used.

Examples

Skew-Symmetric Matrix

Create a 3-by-3 skew-symmetric matrix for an LMI problem in which n = 2. Display the matrix to
verify its form.

X = skewdec(3,2)

X = 3×3

     0    -3    -4
     3     0    -5
     4     5     0

See Also
decinfo | lmivar

Introduced before R2006a
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slowfast
Slow and fast modes decomposition

Syntax
[G1,G2] = slowfast(G,ns)

Description
slowfast computes the slow and fast modes decompositions of a system G(s) such that

G(s) = [G1(s)] + [G2(s)]

G(s) contains the N slowest modes (modes with the smallest absolute value) of G.

[G1(s)]: = A 11, B 1, C 1, D1  denotes the slow part of G(s). The slow poles have low frequency and
magnitude values.

[G2(s)]: = A 22, B 2, C 2, D2  denotes the fast part. The fast poles have high frequency and magnitude
values.

The variable ns denotes the index where the modes will be split.

Use freqsep to separate slow and fast modes at a specified cutoff frequency instead of a specified
number of modes.

References
M.G. Safonov, E.A. Jonckheere, M. Verma and D.J.N. Limebeer, “Synthesis of Positive Real
Multivariable Feedback Systems”, Int. J. Control, vol. 45, no. 3, pp. 817-842, 1987.

See Also
schur | modreal | freqsep

Introduced before R2006a
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squeeze
Remove singleton dimensions for umat objects

Syntax
B = squeeze(A)

Description
B = squeeze(A) returns an array B with the same elements as A but with all the singleton
dimensions removed. A singleton is a dimension such that size(A,dim)==1. 2-D arrays are
unaffected by squeeze so that row vectors remain rows.

See Also
permute | reshape

Introduced before R2006a
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uss/ssbal
Scale state/uncertainty while preserving uncertain input/output map of uncertain system

Syntax
usysout = ssbal(usys)

usysout = ssbal(usys,wc)

usysout = ssbal(usys,wc,FSflag)

usysout = ssbal(usys,wc,FSflag,BLTflag)

Description
usysout = ssbal(usys) yields a system whose input/output and uncertain properties are the
same as usys, a uss object. The numerical conditioning of usysout is usually better than that of
usys, improving the accuracy of additional computations performed with usysout. usysout is a
uss object. The balancing algorithm uses mussv to balance the constant uncertain state-space
matrices in discrete time. If usys is a continuous-time uncertain system, the uncertain state-space is
mapped by using a bilinear transformation into discrete time for balancing.

usysout = ssbal(usys,wc) defines the critical frequency wc for the bilinear prewarp
transformation from continuous time to discrete time. The default value of wc is 1 when the nominal
uncertain system is stable and 1.25*mxeig when it is unstable. mxeig corresponds to the value of
the real, most positive pole of usys.

usysout = ssbal(usys,wc,FSflag) sets the scaling flag FSflag to handle repeated uncertain
parameters. Setting FSflag=1 uses full matrix scalings to balance the repeated uncertain parameter
blocks. FSflag=0, the default, uses a single, positive scalar to balance the repeated uncertain
parameter blocks.

usysout = ssbal(usys,wc,FSflag,BLTflag) sets the bilinear transformation flag, BLTflag. By
default, BLTflag=1 transforms the continuous-time system usys to a discrete-time system for
balancing. BLTflag=0 results in balancing the continuous-time state-space data from usys. Note
that if usys is a discrete-time system, no bilinear transformation is performed.

ssbal does not work on an array of uncertain systems. An error message is generated to alert you to
this.

Examples
Consider a two-input, two-output, two-state uncertain system with two real parameter uncertainties,
p1 and p2.
p2=ureal('p2',-17,'Range',[-19 -11]); 
p1=ureal('p1',3.2,'Percentage',0.43); 
A = [-12 p1;.001 p2]; 
B = [120 -809;503 24]; 
C = [.034 .0076; .00019 2]; 
usys = ss(A,B,C,zeros(2,2)) 
USS: 2 States, 2 Outputs, 2 Inputs, Continuous System 
  p1: real, nominal = 3.2, variability = [-0.43  0.43]%, 1 occurrence 

1 Functions

1-496



  p2: real, nominal = -17, range = [-19  -11], 1 occurrence          
usys.NominalValue 
a = 
          x1     x2 
   x1    -12    3.2 
   x2  0.001    -17 

b = 
         u1    u2 
   x1   120  -809 
   x2   503    24 

c = 
            x1       x2 
   y1    0.034   0.0076 
   y2  0.00019        2 

d = 
       u1  u2 
   y1   0   0 
   y2   0   0 

Continuous-time model. 
ssbal is used to balance the uncertain system usys.

usysout = ssbal(usys) 
USS: 2 States, 2 Outputs, 2 Inputs, Continuous System 
  p1: real, nominal = 3.2, variability = [-0.43  0.43]%,
1 occurrence 
  p2: real, nominal = -17, range = [-19  -11], 1 occurrence  
        
usysout.NominalValue 
a = 
             x1        x2 
   x1       -12    0.3302 
   x2  0.009692       -17 

b = 
           u1      u2 
   x1  0.7802   -5.26 
   x2    31.7   1.512 

c = 
            x1       x2 
   y1    5.229   0.1206 
   y2  0.02922    31.74 

d = 
       u1  u2 
   y1   0   0 
   y2   0   0 

Continuous-time model. 

See Also
canon | c2d | d2c | mussv | mussvextract | ss2ss

Introduced before R2006a
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stack
Construct array by stacking uncertain matrices, models, or arrays

Syntax
umatout = stack(arraydim,umat1,umat2,...)

usysout = stack(arraydim,usys1,usys2,...)

Description
stack constructs an uncertain array by stacking uncertain matrices, models, or arrays along array
dimensions of an uncertain array.

umatout = stack(arraydim,umat1,umat2,...) produces an array of uncertain matrices,
umatout, by stacking (concatenating) the umat matrices (or umat arrays) umat1, umat2,... along the
array dimension arraydim. All models must have the same number of columns and rows. The
column/row dimensions are not counted in the array dimensions.

umatout = stack(arraydim,usys1,usys2,...) produces an array of uncertain models, ufrd
or uss, or usysout, by stacking (concatenating) the ufrd or uss matrices (or ufrd or uss arrays)
usys1, usys2,... along the array dimension arraydim. All models must have the same number of
columns and rows (the same input/output dimensions). Note that the input/output dimensions are not
considered for arrays.

Examples
Consider usys1 and usys2, two single-input/single-output uss models:

zeta = ureal('zeta',1,'Range',[0.4 4]); 
wn = ureal('wn',0.5,'Range',[0.3 0.7]); 
P1 = tf(1,[1 2*zeta*wn wn^2]); 
P2 = tf(zeta,[1 10]); 

You can stack along the first dimension to produce a 2-by-1 uss array.

stack(1,P1,P1) 
USS: 2 States, 1 Output, 1 Input, Continuous System [array, 2 x 1] 
    wn: real, nominal = 0.5, range = [0.3  0.7], 3 occurrences 
  zeta: real, nominal = 1, range = [0.4  4], 1 occurrence     

You can stack along the second dimension to produce a 1-by-2 uss array.

stack(2,P1,P2)   % produces a 1-by-2 USS array. 
USS: 2 States, 1 Output, 1 Input, Continuous System [array, 1 x 2] 
    wn: real, nominal = 0.5, range = [0.3  0.7], 3 occurrences 
  zeta: real, nominal = 1, range = [0.4  4], 1 occurrence     

You can stack along the third dimension to produce a 1-by-1-by-2 uss array.

stack(3,P1,P2)   % produces a 1-by-1-by-2 USS array. 
USS: 2 States, 1 Output, 1 Input, Continuous System
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[array, 1 x 1 x 2] 
    wn: real, nominal = 0.5, range = [0.3  0.7], 3 occurrences 
  zeta: real, nominal = 1, range = [0.4  4], 1 occurrence     

See Also
append | blkdiag | horzcat | vertcat

Introduced before R2006a
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symdec
Form symmetric matrix

Syntax
x = symdec(m,n)

Description
symdec(m,n) forms an m-by-m symmetric matrix of the form

(n + 1) (n + 2) (n + 4) …
(n + 2) (n + 3) (n + 5) …
(n + 4) (n + 5) (n + 6) …

… … … …
… … … …

This function is useful to define symmetric matrix variables. n is the number of decision variables.

Examples

Symmetric Matrix

Create a 4-by-4 symmetric matrix for an LMI problem in which n = 2. Display the matrix to verify its
form.

X = symdec(4,2)

X = 4×4

     3     4     6     9
     4     5     7    10
     6     7     8    11
     9    10    11    12

See Also
decinfo | skewdec

Introduced before R2006a
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sysic
(Not recommended) Build interconnections of certain and uncertain matrices and systems

Note sysic is not recommended. Use connect instead.

Syntax
sysout = sysic

Description
sysic requires that 3 variables with fixed names be present in the calling workspace: systemnames,
inputvar and outputvar.

systemnames is a char containing the names of the subsystems (double, tf, zpk, ss, uss,
frd, ufrd, etc) that make up the interconnection. The names must be separated by spaces with no
additional punctuation. Each named variable must exist in the calling workspace.

inputvar is a char, defining the names of the external inputs to the interconnection. The names are
separated by semicolons, and the entire list is enclosed in square brackets [ ]. Inputs can be scalar
or multivariate. For instance, a 3-component (x,y,z) force input can be specified with 3 separate
names, Fx, Fy, Fz. Alternatively, a single name with a defined integer dimension can be specified,
as in F{3}. The order of names in inputvar determines the order of inputs in the interconnection.

outputvar is a char, describing the outputs of the interconnection. Outputs do not have names-they
are simply linear combinations of individual subsystem's outputs and external inputs. Semicolons
delineate separate components of the interconnections outputs. Between semicolons, signals can be
added and subtracted, and multiplied by scalars. For multivariable subsystems, arguments within
parentheses specify which subsystem outputs are to be used and in what order. For instance,
plant(2:4,1,9:11) specifies outputs 2,3,4,1,9,10,11 from the subsystem plant. If a
subsystem is listed in outputvar without arguments, then all outputs from that subsystem are used.

sysic also requires that for every subsystem name listed in systemnames, a corresponding variable,
input_to_ListedSubSystemName must exist in the calling workspace. This variable is similar to
outputvar – it defines the input signals to this particular subsystem as linear combinations of
individual subsystem's outputs and external inputs.

sysout = sysic will perform the interconnection described by the variables above, using the
subsystem data in the names found in systemnames. The resulting interconnection is returned in the
output argument, listed above as sysout.

After running sysic the variables systemnames, inputvar, outputvar and all of the
input_to_ListedSubSystemName will exist in the workspace. Setting the optional variable
cleanupsysic to 'yes' will cause these variables to be removed from the workspace after sysic
has formed the interconnection.
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Examples
A simple system interconnection, identical to the system illustrated in the iconnect description.
Consider a three-input, two-output LTI matrix T,

which has internal structure

P = rss(3,2,2); 
K = rss(1,1,2); 
A = rss(1,1,1); 
W = rss(1,1,1); 
systemnames = 'W A K P'; 
inputvar = '[noise;deltemp;setpoint]'; 
outputvar = '[57.3*P(1);setpoint-P(2)]'; 
input_to_W = '[deltemp]'; 
input_to_A = '[K]'; 
input_to_K = '[P(2)+noise;setpoint]'; 
input_to_P = '[W;A]'; 
cleanupsysic = `yes';
T = sysic; 
exist(`inputvar') 

Limitations
The syntax of sysic is limited, and for the most part is restricted to what is shown here. The
iconnect interconnection object can also be used to define complex interconnections, and has a
more flexible syntax.

Within sysic, error-checking routines monitor the consistency and availability of the subsystems and
their inputs. These routines provide a basic level of error detection to aid the user in debugging.

See Also
connect | iconnect

1 Functions

1-502



Introduced before R2006a
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ucomplex
Create uncertain complex parameter

Syntax
A = ucomplex('NAME',nominalvalue)

A = ucomplex('NAME',nominalvalue,'Property1',Value1,... 
         'Property2',Value2,...)

Description
An uncertain complex parameter is used to represent a complex number whose value is uncertain.
Uncertain complex parameters have a name (the Name property), and a nominal value (the
NominalValue property).

The uncertainty (potential deviation from the nominal value) is described in two different manners:

• Radius (radius of disc centered at NominalValue)
• Percentage (disc size is percentage of magnitude of NominalValue)

The Mode property determines which description remains invariant if the NominalValue is changed
(the other is derived). The default Mode is 'Radius' and the default radius is 1.

Property/Value pairs can also be specified at creation. For instance,

B = ucomplex('B',6-j,'Percentage',25) 

sets the nominal value to 6-j, the percentage uncertainty to 25 and, implicitly, the Mode to
'Percentage'.

Examples

Sample Uncertain Complex Parameter

Compute 400 random samples of an uncertain complex parameter and visualize them in a plot.

Create an uncertain complex parameter with internal name A.

A = ucomplex('A',4+3*j)

A = 
  Uncertain complex parameter "A" with nominal value 4+3i and radius 1.

The uncertain parameter's possible values are a complex disc of radius 1, centered at 4 + 3_j_. The
value of A.percentage is 20 (radius is 1/5 of the magnitude of the nominal value).

You can visualize the uncertain complex parameter by sampling and plotting the data.

sa = usample(A,400); 
w = linspace(0,2*pi,200); 
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circ = sin(w) + j*cos(w); 
rc = real(A.NominalValue+circ); 
ic = imag(A.NominalValue+circ); 
plot(real(sa(:)),imag(sa(:)),'o',rc,ic,'k-') 
xlim([2.5 5.5]) 
ylim([1.5 4.5]) 
axis equal

See Also
get | umat | ucomplexm | ultidyn | ureal | umargin

Introduced before R2006a
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ucomplexm
Create uncertain complex matrix

Syntax
M = ucomplexm('Name',NominalValue)

M = ucomplexm('Name',NominalValue,'WL',WLvalue,'WR',WRvalue)

M = ucomplexm('Name',NominalValue,'Property',Value)

Description
M = ucomplexm('Name',NominalValue) creates an uncertain complex matrix representing a ball
of complex-valued matrices, centered at a NominalValue and named Name.

M = ucomplexm('Name',NominalValue,'WL',WLvalue,'WR',WRvalue) creates an uncertain
complex matrix with weights WL and WR. Specifically, the values represented by M are all matrices H
that satisfy norm(inv(M.WL)*(H - M.NominalValue)*inv(M.WR)) <= 1. WL and WR are
square, invertible, and weighting matrices that quantify the size and shape of the ball of matrices
represented by this object. The default values for WL and WR are identity matrices of appropriate
dimensions.

Trailing Property/Value pairs are allowed, as in

M = ucomplexm('NAME',nominalvalue,'P1',V1,'P2',V2,...)

The property AutoSimplify controls how expressions involving the uncertain matrix are simplified.
Its default value is 'basic', which means elementary methods of simplification are applied as
operations are completed. Other values for AutoSimplify are 'off'', no simplification performed,
and 'full' which applies model-reduction-like techniques to the uncertain object.

Examples

Sample an Uncertain Complex Matrix

Create a ucomplexm with the name F, nominal value [1 2 3; 4 5 6], and weighting matrices WL
= diag([.1.3]), WR = diag([.4 .8 1.2]).

F = ucomplexm('F',[1 2 3;4 5 6],'WL',diag([.1 .3]),... 
   'WR',diag([.4 .8 1.2]))

F = 
  Uncertain complex matrix "F" with 2 rows and 3 columns.

Sample the difference between the uncertain matrix and its nominal value at 80 points, yielding a 2-
by-3-by-80 matrix typicaldev.

typicaldev = usample(F - F.NominalValue,80);
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Plot histograms of the deviations in the (1,1) entry and the (2,3) entry of the complex matrix.

The absolute values of the (1,1) entry and the (2,3) entry are shown by histogram plots. Typical
deviations in the (1,1) entry should be about 10 times smaller than the typical deviations in the (2,3)
entry.

subplot(2,1,1); 
td11 = squeeze(typicaldev(1,1,:));
hist(abs(td11));
xlim([0 .25]) 
title('Sampled  F(1,1) - F(1,1).NominalValue') 
subplot(2,1,2); 
td23 = squeeze(typicaldev(2,3,:));
hist(abs(td23));
title('Sampled  F(2,3) - F(2,3).NominalValue')

See Also
get | umat | ucomplex | ultidyn | ureal | umargin

Introduced before R2006a
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ucover
Fit uncertain model to set of LTI responses

Syntax
usys = ucover(Parray,Pnom,ord)
usys = ucover(Parray,Pnom,ord1,ord2,utype)
[usys,info] = ucover(Parray, ___ )
[usys,info] = ucover(Pnom,info_in,ord1,ord2)

Description
usys = ucover(Parray,Pnom,ord) returns an uncertain model usys with nominal value Pnom
and whose range of behaviors includes all responses in the LTI array Parray. The uncertain model
structure is of the form usys = Pnom I + W(s)Δ(s) , where:

• Δ is a ultidyn object that represents uncertain dynamics with unit peak gain.
• W is a stable, minimum-phase shaping filter of order ord that adjusts the amount of uncertainty at

each frequency. For a MIMO Pnom, W is diagonal, with the orders of the diagonal elements given
by ord.

usys = ucover(Parray,Pnom,ord1,ord2,utype) returns an uncertain model with the structure
specified by utype.

• utype = 'InputMult' — Input multiplicative form, in which usys = Pnom*(I +
W1*Delta*W2)

• utype = 'OutputMult' — Output multiplicative form, in which usys = (I +
W1*Delta*W2)*Pnom

• utype = 'Additive' — Additive form, in which usys = Pnom + W1*Delta*W2

Delta represents uncertain dynamics with unit peak gain, and W1 and W2 are diagonal, stable,
minimum-phase shaping filters with orders specified by ord1 and ord2, respectively.

[usys,info] = ucover(Parray, ___ ) returns a structure info that contains information about
the fit. You can use this syntax with any of the previous input-argument combinations.

[usys,info] = ucover(Pnom,info_in,ord1,ord2) improves the fit using initial filter values in
the info result. Supply new orders ord1 and ord1 for W1 and W2. When you are trying different filter
orders to improve the result, this syntax speeds up iteration by letting you reuse previously computed
information.

Examples

Fit Uncertain Model to Array of LTI Responses

Fit an uncertain model to an array of LTI responses. The responses can be, for example, the results of
multiple runs to acquire frequency response data from a physical system.
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For this example, generate the frequency response data by creating an array of LTI models and
sampling the frequency response of those models.

Pnom = tf(2,[1 -2]);
p1 = Pnom*tf(1,[.06 1]); 
p2 = Pnom*tf([-.02 1],[.02 1]); 
p3 = Pnom*tf(50^2,[1 2*.1*50 50^2]); 
array = stack(1,p1,p2,p3);
Parray = frd(array,logspace(-1,3,60));

The frequency response data in Parray represents three separate data acquisition experiments on
the system.

Plot the relative errors between the nominal plant response and the three models in the LTI array.

relerr = (Pnom-Parray)/Pnom;
bodemag(relerr)

If you use a multiplicative uncertainty model structure, you want the magnitude of the shaping filter
to fit the maximum relative error at each frequency. Use this requirement to help choose the order of
the shaping filter. First, try a first-order shaping filter.

[P,Info] = ucover(Parray,Pnom,1);

P is an uncertain state-space (uss) model that captures the uncertainty as a ultidyn uncertain
dynamics block.

P.Uncertainty
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ans = struct with fields:
    Parray_InputMultDelta: [1x1 ultidyn]

The Info structure contains other information about the fit, including the resulting shaping filter,
Info.W1. Plot the response to see how well the shaping filter fits the relative errors.

W = Info.W1;
bodemag(relerr,'b--',W,'r',{0.1,1000});

The plot shows that the filter W is too conservative and exceeds the maximum relative error at most
frequencies. To obtain a tighter fit, rerun the function using a fourth-order filter.

[P,Info] = ucover(Parray,Pnom,4);

Evaluate the fit by plotting the Bode magnitude plot.

W = Info.W1;
bodemag(relerr,'b--',W,'r',{0.1,1000});
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This plot shows that for the fourth-order filter, the magnitude of W closely matches the largest error,
yielding the minimum uncertainty that captures all the variation.

Input Arguments
Parray — Array of models to cover
array of LTI models

Array of models to cover with a dynamically uncertain model, specified as an array of LTI models such
as tf, ss, zpk, or frd models.

Pnom — Nominal model
LTI model

Nominal model of the uncertain model, specified as an LTI model such as a tf, ss, zpk, or frd
model.

ord — Filter order
integer | vector | []

Filter order, specified as an integer, vector, or []. The values in ord specify the number of states of
each diagonal entry of the shaping filter W. Specify ord as:

• A single integer, for a SISO Pnom, or to use a scalar filter W for a MIMO Pnom.

 ucover

1-511



• A vector of length equal to the number of outputs in Pnom, to specify different orders for each
diagonal entry of W.

• [], to set W = 1.

ord1, ord2 — Filter orders
integer | vector | []

Filter orders, specified as integers, vectors, or []. The values in ord1 and ord2 specify the number
of states of each diagonal entry of the shaping filters W1, and W2, respectively. Specify ord1 and ord2
as:

• A single integer, to use scalar filters for W1 and W2.
• A vector, to specify different orders for each diagonal entry of W1 and W2. The lengths of these

vectors depend on the uncertainty model you specify in utype. The following table gives the
lengths, where Pnom has Nu inputs and Ny outputs.

utype length(ord1) length(ord2)
'InputMult' Nu Nu
'OutputMult' Ny Ny
'Additive' Ny Nu

• [], to set W1 = 1 or W2 = 1.

utype — Uncertainty model
'InputMult' (default) | 'OutputMult' | 'Additive'

Uncertainty model, specified as one of the following.

• 'InputMult' — Input multiplicative form, in which usys = Pnom*(I + W1*Delta*W2)
• 'OutputMult' — Output multiplicative form, in which usys = (I + W1*Delta*W2)*Pnom
• 'Additive' — Additive form, in which usys = Pnom + W1*Delta*W2

Delta represents uncertain dynamics with unit peak gain, and W1 and W2 are diagonal, stable,
minimum-phase shaping filters with orders specified by ord1 and ord2, respectively.

Use additive uncertainty to model the absolute gaps between Pnom and Parray, and multiplicative
uncertainty to model relative gaps.

For SISO models, input and output multiplicative uncertainty are equivalent. For MIMO systems with
more outputs than inputs, the input multiplicative structure might be too restrictive and might not
adequately cover the range of models.

info_in — Details from previous ucover run
structure

Details from a previous ucover run, specified as a structure generated as the info output of the
previous run. Use this input when calling ucover iteratively to improve fit results by trying different
filter orders.
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Output Arguments
usys — Uncertain model
uss model | ufrd model

Uncertain model, returned as a uss or ufrd model. The returned model is a uss model, unless
Parray or Pnom are frequency-response data (frd) models, in which case usys is a ufrd model.

usys has one uncertain element, a ultidyn block with the name given in the DeltaName field of the
info output argument.

info — Information about the fit
structure

Information about the fit, returned as a structure containing the following fields.

Field Value
W1 Fitted shaping filter W or W1, returned as a state-space (ss) model.
W2 Fitted shaping filter W2, returned as a state-space (ss) model.
W1opt W or W1 evaluated on a frequency grid, returned as an frd model.
W2opt W2 evaluated on a frequency grid, returned as an frd model.
Ord1 Orders of the diagonal elements of W or W1, returned as a scalar or

vector. These values are the values you supply with the ord or ord1
input argument.

Ord2 Orders of the diagonal elements of W2, returned as a scalar or vector.
These values are the values you supply with the ord2 input argument.

Type Uncertainty model used for the fit, returned as 'InputMult',
'OutputMult', or 'Additive'.

DeltaName Name of the ultidyn block of usys that represents the uncertainty
model Delta, returned as a character vector.

Residual Residuals of the fit, returned as an array of frd models with the same
array dimensions as Parray.

Algorithms
ucover fits the responses of LTI models in Parray by modeling the gaps between Parray and the
nominal response Pnom as uncertainty on the system dynamics. To model the frequency distribution
of these unmodeled dynamics, ucover measures the gap between Pnom and Parray at each
frequency on a grid, and selects shaping filters whose magnitude approximates the maximum gap.

To design the minimum-phase shaping filters W1 and W2, the ucover command performs two steps:

1 Compute the optimal values of W1 and W2 on a frequency grid.
2 Fit W1 and W2 values with the dynamic filters of the specified orders using fitmagfrd.

The model structure usys = Pnom I + W(s)Δ(s)  that you obtain using usys =
ucover(Parray,Pnom,ord) corresponds to W1 = W and W2 = 1.

For instance, the following figure shows the relative gap between the nominal response and six LTI
responses, enveloped using a second-order shaping filter and a fourth-order filter.
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If you use the single-filter syntax usys = ucover(Parray,Pnom,ord), the software sets the
uncertainty to W*Delta, where Delta is a ultidyn object that represents unit-gain uncertain
dynamics. Therefore, the amount of uncertainty at each frequency is specified by the magnitude of W
and closely tracks the gap between Pnom and Parray. In the above figure, the fourth-order filter
tracks the maximum gap more closely and therefore yields a less conservative estimate of
uncertainty.

See Also
fitmagfrd | ultidyn | uss | ufrd

Topics
“Modeling a Family of Responses as an Uncertain System”
“Simultaneous Stabilization Using Robust Control”
“First-Cut Robust Design”

Introduced in R2009b
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udyn
Create unstructured uncertain dynamic system object

Syntax
n = udyn('name',iosize);

Description
n = udyn('name',iosize) creates an unstructured uncertain dynamic system class, with input/
output dimension specified by iosize. This object represents the class of completely unknown
multivariable, time-varying nonlinear systems.

For practical purposes, these uncertain elements represent noncommuting symbolic variables
(placeholders). All algebraic operations, such as addition, subtraction, and multiplication (i.e.,
cascade) operate properly, and substitution (with usubs) is allowed.

The analysis tools (e.g., robstab) do not currently handle these types of uncertain elements.
Therefore, these elements do not provide a significant amount of usability, and their role in the
toolbox is small.

Examples
You can create a 2-by-3 udyn element and check its size and properties.

N = udyn('N',[2 3]) 
Uncertain Dynamic System: Name N, size 2x3 
size(N) 
ans = 
     2     3 
get(N) 
            Name: 'N' 
    NominalValue: [2x3 double] 
    AutoSimplify: 'basic' 

See Also
ureal | ultidyn | ucomplex | ucomplexm | umargin | umargin

Introduced before R2006a
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ufind
Find uncertain variables in Simulink model

Syntax
uvars = ufind('mdl')

[uvars,pathinfo] = ufind('mdl')

uvars = ufind(usys_1,usys_2,...)

Description
uvars = ufind ('mdl') finds Uncertain State Space blocks in the Simulink model mdl. It returns
a structure uvars that contains all uncertain variables associated with the Uncertain State Space
blocks. Each uncertain variable is a ureal, umargin or ultidyn object and is listed by name in
uvars.

[uvars,pathinfo] = ufind('mdl') returns a cell array pathinfothat contains paths to the
Uncertain State Space blocks and the corresponding uncertain variables in the block. The first
column of pathinfo lists the block paths through the model hierarchy and the second column lists
the uncertain variables associated with the block. Use pathinfo to verify that all Uncertain State
Space blocks in the model mdl have been identified.

uvars = ufind(usys_1,usys_2,...) collects all uncertain variables referenced by the uncertain
model usys_n. usys_n can be uss or ufrd models. Use this syntax as an alternative to querying the
model itself, when you know the uncertain models that the Uncertain State Space blocks use.

ufind can find Uncertain State Space blocks inside Masked Subsystems, Library Links, and Model
References but not inside Accelerated Model References. ufind errors out if the same uncertain
variable name has different definitions in the model. For example, if your model contains two
Uncertain State Space blocks where the uncertain system variables define the same uncertain
variable 'unc_par" as ultidyn('unc_par',[1 1]) and ureal('unc_par',5), such an error
occurs.

Examples
Find all Uncertain State Space blocks and uncertain variables in a Simulink model:

1 Open the Simulink model.

open_system('usim_model')

The model, as shown in the following figure, contains three Uncertain State Space blocks named
Unmodeled Plant Dynamics, Plant, and Sensor Gain. These blocks depend on three uncertain
variables named input_unc, unc_pole and sensor_gain.
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2 Use ufind to find all Uncertain State Space blocks and uncertain variables in the model.

[uvars,pathinfo] = ufind('usim_model')
3 Type uvars to view the structure uvars. MATLAB returns the following result:

uvars = 

      input_unc: [1x1 ultidyn]
    sensor_gain: [1x1 ureal]
       unc_pole: [1x1 ureal]

Each uncertain variable is a ureal or ultidyn object and is listed by name in uvars.
4 View the Uncertain State Space block paths and uncertain variables.

a Type pathinfo(:,1) to view paths of the Uncertain State Space blocks in the model.
MATLAB returns the following result:

ans = 

    'usim_model/Plant'
    'usim_model/Sensor Gain'
    'usim_model/Unmodeled Plant Dynamics'

b Type pathinfo(:,2) to view the uncertain variables referenced by each Uncertain State
Space block. MATLAB returns the following results:

ans = 

    'unc_pole'
    'sensor_gain'
    'input_unc'

Tutorials
“Simulate Uncertain Model at Sampled Parameter Values”

“Vary Uncertain Values Across Multiple Uncertain Blocks”

Robustness Analysis in Simulink

How To
“Simulate Uncertainty Effects”
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See Also
usample | Uncertain State Space

Introduced in R2009b
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ufrd
Uncertain frequency response data model

Syntax
ufrd_sys = ufrd(M,freqs)
ufrd_sys = ufrd(M,freqs,frequnits)
ufrd_sys = ufrd(M,freqs,frequnits,timeunits)

Description
Uncertain frequency response data models (ufrd) arise when combining numeric frd models with
uncertain models such as ureal, ultidyn, umargin, or uss. A ufrd model keeps track of how the
uncertain elements affect the frequency response. Use ufrd for robust stability and worst-case
performance analysis.

There are three ways to construct a ufrd model:

1 Combine numeric frd models with uncertain models using model arithmetic. For example:

sys = frd(rand(100,1),logspace(-2,2,100));
k = ureal('k',1);
D = ultidyn('Delta',[1 1]);
ufrd_sys = k*sys*(1+0.1*D)

ufrd_sys is a ufrd model with uncertain elements k and D.
2 ufrd_sys = ufrd(M,freqs) converts the dynamic system model or static model M to ufrd. If

M contains Control Design Blocks that do not represent uncertainty, these blocks are replaced by
their current value. (To preserve both tunable and uncertain Control Design Blocks, use genfrd
instead.)

Use ufrd_sys = ufrd(M,freqs,frequnits) to specify the frequency units of the
frequencies in freqs. The argument frequnits can take the following values:

• 'rad/TimeUnit'
• 'cycles/TimeUnit'
• 'rad/s'
• 'Hz'
• 'kHz'
• 'MHz'
• 'GHz'
• 'rpm'

Use ufrd_sys = ufrd(M,freqs,frequnits,timeunits) to specify the time unit of
ufrd_sys when M is a static model. timeunits can take the following values:

• 'nanoseconds'
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• 'microseconds'
• 'milliseconds'
• 'seconds'
• 'minutes'
• 'hours'
• 'days'
• 'weeks'
• 'months'
• 'years'

3 Use frd to construct a ufrd model from an uncertain matrix (umat) representing uncertain
frequency response data. For example:

a = ureal('delta',1,'percent',50);
freq = logspace(-2,2,100);
RespData = rand(1,1,100) * a;
usys = frd(RespData,freq,0.1)

Examples

Uncertain Frequency Response Model

Compute the uncertain frequency response of an uncertain system with both parametric uncertainty
(ureal) and uncertain gain and phase (umargin). Create the uncertain frequency response by
building a uss model using uncertain dynamics, and then extracting its response at a specified set of
frequencies.

p1 = ureal('p1',5,'Range',[2 6]); 
p2 = ureal('p2',3,'Plusminus',0.4); 
F = umargin('F',1.2); 
A = [-p1 0;p2 -p1]; 
B = [0;p2]; 
C = [1 1]; 
usys = uss(A,B,C,0)*F; 

freqs = logspace(-2,2,60);
usysfrd = ufrd(usys,freqs); 

Plot random samples and the nominal value of the uncertain frequency response.

rng(0);    % for reproducibility
bode(usysfrd,'r',usysfrd.NominalValue,'b+') 

1 Functions

1-520



See Also
frd | ss | uss | genfrd | frdfun

Topics
“Control Design Blocks”

Introduced before R2006a
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ulinearize
Linearize Simulink model with Uncertain State Space block

Syntax
ulin = ulinearize('sys',io)

ulin = ulinearize('sys',op,io)

ulin = ulinearize('sys',op,io,options)

ulin = ulinearize('sys',op)

ulin_block = ulinearize('sys',op,'blockname')

[ulin,op] = ulinearize('sys',snapshottimes,...);

ulin = ulinearize('sys','StateOrder',stateorder)

Description
ulin = ulinearize('sys',io) linearizes the Simulink model sys that contains Uncertain State
Space blocks and returns a linear time-invariant uncertain system ulin. ulin is an uss object. io
is an I/O object that specifies linearization I/O points in the model. Use getlinio or linio to create
io. The linearization occurs at the operating point specified in the model.

ulin=ulinearize('sys',io,op) linearizes the model at the operating point specified in the
operating point object op. Use operpoint or findop to create op. Both op and io are associated
with the same model sys.

ulin=ulinearize('sys',io,op,options) takes a linearization options object options that
contains several options for linearization and returns linear time-invariant uncertain system ulin.
Use linearizeOptions to create options.

ulin=ulinearize('sys',op) linearizes the model sys at the operating point specified in the
operating point object op. The software uses root-level inport and outport blocks in sys as I/O points
for linearization.

ulin_block=ulinearize('sys',op,'blockname',...) takes the name of a block blockname
in the model sys and returns a linear time-invariant uncertain system ulin_block. You can also
specify a fourth argument options to provide options for the linearization.

[ulin,op] = ulinearize('sys',snapshottimes,...) creates operating points for
linearization by simulating the model and taking snapshots of the system's states and inputs at times
specified in the vector snapshottimes. ulin is a set of linear time-invariant uncertain systems and
op is the set of operating point objects used in linearization. You can also specify I/O object for
linearization, or a block name. If you do not specify an I/O object or block name, the linearization uses
root-level inport and outport blocks in the model. You can also supply an additional argument,
options, to provide options for linearization.

ulin = ulinearize('sys','StateOrder',stateorder) creates a linear-time-invariant
uncertain system ulin, whose states are in a specified order. Specify the state order in the cell array
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stateorder by entering the names of the blocks containing states in the model. For all blocks, you
can enter block names as the full block path. For continuous blocks, you can alternatively enter block
names as the user-defined unique state name.

Examples
Compute uncertain linearization of a Simulink model containing Uncertain State Space blocks:

% Define uncertain variables and uncertain system variables 
% to use in Uncertain State Space blocks.
unc_pole = ureal('unc_pole',-5,'Range',[-10 -4]);
plant = ss(unc_pole,5,1,0);
wt = makeweight(0.25,130,2.5);
input_unc = ultidyn('input_unc',[1 1]);
sensor_pole = ureal('sensor_pole',-20,'Range',[-30 -10]);
sensor = tf(1,[1/(-sensor_pole) 1]);

% Open Simulink model. The model contains three Uncertain State 
% Space blocks named Unmodeled Plant Dynamics, Uncertain Plant and
% Uncertain Sensor, and linearization I/O points.
open_system('rct_ulinearize_uss')

% Obtain linearization I/O points.
mdl = 'rct_ulinearize_uss';
io = getlinio(mdl);

% Compute the uncertain linearization of the model.
ulin = ulinearize(mdl,io)
% MATLAB returns an uss object with 5 states.

Tutorials
“Linearize Simulink Block to Uncertain Model”

Linearization of Simulink Models with Uncertainty

How To
“Obtain Uncertain State-Space Model from Simulink Model”

See Also
ureal | udyn | ultidyn | uss

Introduced in R2009b
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ultidyn
Create uncertain linear time-invariant object

Syntax
H = ultidyn('Name',iosize)

H = ultidyn('Name',iosize,'Property1',Value1,'Property2',Value2,...)

Description
H = ultidyn('Name',iosize) creates an uncertain linear, time-invariant objects are used to
represent unknown dynamic objects whose only known attributes are bounds on their frequency
response. Uncertain linear, time-invariant objects have a name (the Name property), and an input/
output size (ioSize property).

Trailing Property/Value pairs are allowed in the construction.

H = ultidyn('name',iosize,'Property1',Value1,'Property2',Value2,...)

The property Type is 'GainBounded' (default) or 'PositiveReal', and describes in what form the
knowledge about the object's frequency response is specified.

• If Type is 'GainBounded', then the knowledge is an upper bound on the magnitude (i.e.,
absolute value), namely abs(H)<= Bound at all frequencies. The matrix generalization of this is
∥H∥<= Bound.

• If Type is 'PositiveReal' then the knowledge is a lower bound on the real part, namely
Real(H) >= Bound at all frequencies. The matrix generalization of this is H+H' >= 2*Bound

The property Bound is a real, scalar that quantifies the bound on the frequency response of the
uncertain object as described above.

The property SampleStateDimension is a positive integer, defining the state dimension of random
samples of the uncertain object when sampled with usample. The default value is 3.

The property AutoSimplify controls how expressions involving the uncertain matrix are simplified.
Its default value is 'basic', which means elementary methods of simplification are applied as
operations are completed. Other values for AutoSimplify are 'off', no simplification performed,
and 'full' which applies model-reduction-like techniques to the uncertain object.

Use the property SampleMaxFrequency to limit the natural frequency for sampling. Randomly
sampled uncertain dynamics are no faster than the specified value. The default value is Inf (no limit).

To model frequency-dependent uncertainty levels, multiply the ultidyn object by a suitable shaping
filter. For example, for a ultidyn object dH, the following commands specify an uncertainty bound
that increases from 0.1 at low frequencies to 10 at high frequencies.

W = tf([1 .1],[.1 1]);
dH = W*dH;
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Examples

MIMO Uncertain Dynamics

Create a ultidyn object with internal name 'H', norm bounded by 7, with three inputs and two
outputs.

H = ultidyn('H',[2 3],'Bound',7) 

H = 
  Uncertain LTI dynamics "H" with 2 outputs, 3 inputs, and gain less than 7.

Typically, when you use uncertain dynamics, you apply a weighting function to emphasize the
uncertain contribtion in a certain bandwidth. For instance, suppose that the behavior of your system
is modestly uncertain (say 10%) at low frequencies, while the high-frequency behavior beyond 20
rad/s is not accurately modeled. Use makeweight to create a shaping filter that captures this
behavior.

W = makeweight(.1,20,50);
bodemag(W)

Apply the weighting filter at the block outputs. Examine samples of the unmodeled dynamics.

Hw = blkdiag(W,W)*H;
bodemag(Hw)
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Nyquist Plot of Uncertain Dynamics

Create a scalar ultidyn object with an internal name 'B', whose frequency response has a real part
greater than 2.5.

B = ultidyn('B',[1 1],'Type','PositiveReal','Bound',2.5)

B = 
  Uncertain LTI dynamics "B" with 1 outputs, 1 inputs, and positive real bound of 2.5.

Change the SampleStateDimension to 5, and plot the Nyquist plot of 30 random samples.

B.SampleStateDimension = 5; 
nyquist(usample(B,30))
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Compatibility Considerations
Default value of SampleStateDimension property changed
Behavior changed in R2020a

The default value of the SampleStateDimension property is now 3. Prior to R2020a, the default
value was 1.

SampleStateDimension sets the number of states in random samples of uncertain dynamics taken
with analysis commands such as usample and bode. With SampleStateDimension = 1, all Nyquist
plots of sampled dynamics touch the gain bound at either (–1,0) (frequency = 0) or (1,0) (frequency =
Inf). Higher SampleStateDimension yields points of contact at other frequencies, meaning better
coverage of worst-case possibilities. (The odds of hitting a worst-case value by random sampling is
still very low. You can use sampling to get a rough idea of the effects of uncertainty, but for rigorous
worst-case analysis, use commands such as wcgain and wcdiskmargin.) For an example of the
effect of SampleStateDimension, see “Generate Samples of Uncertain Systems”.

If you have code that relies on the default value of SampleStateDimension being 1, update your
code to explicitly set the property.

See Also
get | ureal | uss | umargin
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Introduced before R2006a
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umargin
Model gain and phase uncertainty

Description
Use the umargin control design block to model gain and phase variations in feedback loops.
Modeling gain and phase variations in your system lets you verify stability margins during robustness
analysis or enforce them during robust controller design.

To add gain and phase uncertainty to a feedback loop, you incorporate umargin blocks into an
uncertain state-space (uss) model of the closed-loop system. umargin is a SISO control design block,
representing gain and phase variation at a single location in a single feedback loop. To model gain
and phase uncertainty in MIMO feedback systems, insert a separate umargin object at each location
in the system at which you want to introduce gain and phase uncertainty.

umargin models gain and phase variations as a factor F multiplying the open-loop response L. This
factor takes values in a disk centered on the real axis and containing F = 1. You specify this disk by
its intersection DGM = [gmin,gmax] with the real axis, which represents the relative amount of gain
variation around the nominal value F = 1. To specify both gain and phase uncertainty, first use
getDGM to obtain a DGM value that describes a disk that captures both your specified gain and phase
ranges. For more information about the disk-based uncertainty model, see “Algorithms” on page 1-
545.

When you have a uss model containing umargin control design blocks, you can perform robustness
and worst-case analysis to examine how gain and phase variation affects the response of the system.
For instance, use robstab and robgain to analyze the robust stability and robust performance of a
system with gain and phase uncertainty. Use wcgain and wcsigmaplot to examine the worst-case
responses of the system.

Requiring robust stability for a closed-loop system with umargin gain and phase uncertainty is
equivalent to enforcing a disk-based gain margin [gmin,gmax] and corresponding phase margin.
Therefore, you can use umargin blocks to enforce suitable disk margins when designing robust
controllers with musyn.

Creation
Syntax
F = umargin(name,DGM)
F = umargin(name,GM)
F = umargin( ___ ,Name,Value)

Description

F = umargin(name,DGM) models relative gain uncertainty in the range DGM = [gmin,gmax] with
gmin < 1 and gmax > 1. The gain modeled by F varies in this range for phase held at its nominal
value. When you have both gain and phase uncertainty, use getDGM to find the corresponding DGM.
This syntax also sets the Name property of F.
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F = umargin(name,GM) is the same as umargin(name,[1/GM,GM]). This syntax specifies a gain
that can increase or decrease by a factor GM in the absence of phase uncertainty. The corresponding
amount of phase uncertainty is determined by the disk-based uncertainty model that umargin uses
(see “Algorithms” on page 1-545).

F = umargin( ___ ,Name,Value) sets additional properties on page 1-530 of F using name-value
pairs. For example, F = umargin('F',[0.8,1.4],'InputName','u0','OutputName','u')
creates a umargin block and sets the input and output names for use with connect. Enclose each
property name in quotes.

Input Arguments

DGM — Range of relative gain variation
two-element vector

Range of relative gain variation, specified as a two-element vector of the form [gmin,gmax], where
gmin < 1 and gmax > 1. For instance, DGM = [0.8 1.5] means that the modeled gain can vary
between 80% and 150% of its nominal value (that is, change by a factor between 0.8 and 1.5). gmin
can be negative, defining a range of relative gain variation that includes a change in sign.

The modeled uncertainty includes the corresponding phase variation determined by the disk-based
uncertainty model (see “Algorithms” on page 1-545). To get the gain range DGM that best represents
the gain and phase variation that you want to model, use getDGM.

GM — Amount of gain increase or decrease
scalar

Amount of gain increase or decrease, specified as a scalar. For instance, if you use GM = 2, then the
umargin block represents a gain that can increase or decrease by a factor of two.
umargin(name,GM) is equivalent to umargin(name,[1/GM,GM]). The resulting modeled
uncertainty includes the corresponding phase variation determined by the disk-based uncertainty
model (see “Algorithms” on page 1-545).

Properties
GainChange — Range of relative gain variation
two-element vector

Range of relative gain variation in absolute units, specified as a two-element vector of the form gmin,
gmax, where gmin < 1 and gmax > 1. For example GainChange = [0.8,1.5] means that the gain
can vary between 80% and 150% of its nominal value. gmin can be negative, which models possible
sign changes in the loop gain.

The relationship between this property and the PhaseChange, DiskMargin, and Skew properties is
determined by the disk-based uncertainty model that umargin uses (see “Algorithms” on page 1-
545). If you change the value of this property on an existing umargin block, the other properties are
automatically updated.

PhaseChange — Amount of phase variation
two-element vector

This property is read-only.

1 Functions

1-530



Amount of phase variation in degrees, specified as two-element vector of the form [-pm,pm]. The
value of this property is determined by the value of GainChange and the disk-based uncertainty
model that umargin uses (see “Algorithms” on page 1-545).
Example: [-30,30]

DiskMargin — Normalized uncertainty level
positive scalar

Normalized uncertainty level, specified as a positive scalar. This value is the parameter ɑ that sets the
size of the uncertainty disk (see “Algorithms” on page 1-545).

The relationship between this property and the GainChange, PhaseChange, and Skew properties is
determined by the disk-based uncertainty model that umargin uses. If you change the value of this
property on an existing umargin block, the other properties are automatically updated.
Example: 0.5

Skew — Skew of modeled uncertainty
scalar

Skew of the modeled uncertainty disk, specified as a scalar value. The skew biases the modeled gain
variation toward gain increase or decrease.

• Skew = 0 models a balanced gain range [gmin,gmax], with gmin = 1/gmax.
• Positive Skew models a varying gain that can increase more than it can decrease, gmax > 1/

gmin). For instance, GainChange = [0.8,2] corresponds to a positive Skew value, because the
gain can increase by 100% but decrease by only 20%.

• Negative Skew models a varying gain that can decrease more than it can increase, gmin < 1/
gmax. For instance, GainChange = [0.5,1.2] corresponds to a negative Skew value, because
the can decrease by 50% but increase by only 20%.

The larger the absolute value of Skew, the more the gain range is biased. For additional details about
Skew and how it affects the disk-based uncertainty model, see “Stability Analysis Using Disk
Margins”.

The relationship between this property and the GainChange, PhaseChange, and DiskMargin
properties is determined by the disk-based uncertainty model that umargin uses (see “Algorithms” on
page 1-545). If you change the value of this property on an existing umargin block, the other
properties are automatically updated.

SampleStateDimension — Number of states in random samples
3 (default) | positive integer

Number of states in random samples of the block, specified as an integer. Some analysis commands
such as usample and bode take random samples of uncertain dynamics. This property determines
the number of states in the samples. For more information about how sampling of dynamic
uncertainty works, see “Generate Samples of Uncertain Systems”.

SampleMaxFrequency — Maximum frequency of random samples
Inf (default) | positive scalar

Maximum frequency of random samples, specified as a positive scalar value. Randomly sampled
uncertain dynamics are no faster than the specified value.
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NominalValue — Nominal value
ss model (default)

This property is read-only.

Nominal value, specified as a state-space model representing a SISO static gain of 1 (A, B, C = 0, D =
1). The nominal value of a umargin block is always 1 (no gain and phase variation) regardless of the
range of gain and phase variations the block represents.

AutoSimplify — Block simplification level
'basic' (default) | 'full' | 'off'

Block simplification level, specified as 'basic', 'full', or 'off'. In general, when you combine
uncertain elements to create uncertain state-space models, the software automatically applies
techniques to eliminate redundant copies of the uncertain elements. (See simplify.) Use this
property to specify the simplification to apply when you use model arithmetic or interconnection
techniques with the uncertain block.

• 'basic' — Apply the elementary simplification method after each arithmetical or interconnection
operation.

• 'full' — Apply techniques similar to model reduction.
• 'off' — Perform no simplification.

Name — Name of uncertain element
character vector

Name of uncertain element, specified as a character vector. When you create an uncertain state-
space (uss or genss) model using uncertain control design blocks, the software tracks the blocks
using the name you specify in this property, not the variable name in the MATLAB workspace. For
example, if you create a umargin block using F = umargin('um',2), and combine the block with a
numeric LTI model, the Blocks property of the resulting uss model lists the uncertain control design
block um.

Ts — Sample time
0 (default) | –1 | positive scalar

Sample time, specified as:

• 0 — For continuous-time models.
• Positive scalar value — For discrete-time models. Specify the sample time in the units given in the

TimeUnit property of the model.
• –1 — For discrete-time models with unspecified sample time.

Changing this property does not resample the block.

TimeUnit — Model time units
'seconds' (default) | 'minutes' | 'milliseconds' | ...

Model time units, specified as one of these values:

• 'nanoseconds'
• 'microseconds'
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• 'milliseconds'
• 'seconds'
• 'minutes'
• 'hours'
• 'days'
• 'weeks'
• 'months'
• 'years'

You can specify TimeUnit using a string, such as "hours", but the time units are stored as a
character vector, 'hours'.

Model properties such as sample time Ts, InputDelay, OutputDelay, and other time delays are
expressed in the units specified by TimeUnit. Changing this property has no effect on other
properties, and therefore changes the overall system behavior. Use chgTimeUnit to convert between
time units without modifying system behavior.

InputName — Name of input channel
{''} (default) | cell array containing a character vector

Name of input channel, specified as a cell array containing a character vector. You can set
InputName using a character vector, such as F.InputName = 'u', or using a string, such as
F.InputName = "u". Either way, the input name is stored as a cell array containing a character
vector, {'u'}.

InputUnit — Units of input signal
{''} (default) | cell array containing a character vector

Units of input signal, specified as a cell array containing a character vector. Use InputUnit to keep
track of the units each input signal is expressed in. InputUnit has no effect on system behavior. You
can set InputUnit using a character vector, such as F.InputUnit = 'V', or using a string, such
as F.InputUnit = "V". Either way, the input name is stored as a cell array containing a character
vector, {'V'}.

InputGroup — Input channel groups
structure with no fields (default) | structure

Input channel groups, specified as a structure where the fields are the group names and the values
are the indices of the input channels belonging to the corresponding group. Because umargin blocks
are always SISO, you do not need to specify input groups.

OutputName — Name of output channel
{''} (default) | cell array containing a character vector

Name of output channel, specified as a cell array containing a character vector. You can set
OutputName using a character vector, such as F.OutputName = 'y', or using a string, such as
F.OutputName = "y". Either way, the output name is stored as a cell array containing a character
vector, {'y'}.

OutputUnit — Units of output signal
{''} (default) | cell array containing a character vector
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Units of output signal, specified as a cell array containing a character vector. Use OutputUnit to
keep track of the units each output signal is expressed in. OutputUnit has no effect on system
behavior. You can set OutputUnit using a character vector, such as F.OutputUnit = 'V', or using
a string, such as F.OutputUnit = "V". Either way, the output name is stored as a cell array
containing a character vector, {'V'}.

OutputGroup — Output channel groups
structure with no fields (default) | structure

Output channel groups, specified as a structure where the fields are the group names and the values
are the indices of the input channels belonging to the corresponding group. Because umargin blocks
are always SISO, you do not need to specify output groups.

Notes — Text notes about model
[0×1 string] (default) | string | cell array of character vector

Text notes about the model, stored as a string or a cell array of character vectors. The property stores
whichever of these two data types you provide. For instance, suppose that sys1 and sys2 are
dynamic system models, and set their Notes properties to a string and a character vector,
respectively.

sys1.Notes = "sys1 has a string.";
sys2.Notes = 'sys2 has a character vector.';
sys1.Notes
sys2.Notes

ans = 

    "sys1 has a string."

ans =

    'sys2 has a character vector.'

UserData — Data associated with model
[] (default) | any data type

Data of any kind that you want to associate and store with the model, specified as any MATLAB data
type.

Object Functions
Many functions that work on numeric LTI models also work on uncertain control design blocks such
as umargin. These include model interconnection functions such as connect and feedback, and
linear analysis functions such as bode and stepinfo. Some functions that generate plots, such as
bode and step, plot random samples of the uncertain model to give you a sense of the distribution of
uncertain dynamics. When you use these commands to return data, however, they operate on the
nominal value of the system only. The following lists contain a representative subset of the functions
you can use with umargin models.

Model Interconnection
feedback Feedback connection of multiple models
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connect Block diagram interconnections of dynamic systems
series Series connection of two models
parallel Parallel connection of two models

Robustness and Worst-Case Analysis
uscale Scale uncertainty of block or system
plot (umargin) Visualize gain and phase uncertainty of a umargin block
usample Generate random samples of uncertain or generalized model
usubs Substitute given values for uncertain elements of uncertain objects

Linear Analysis
step Step response plot of dynamic system; step response data
bode Bode plot of frequency response, or magnitude and phase data

Examples

Gain and Phase Variation in SISO Loop

Create a model of a SISO control loop, with gain uncertainty of ±6 dB and phase uncertainty of ±30°.
Use open-loop transfer function

L = 3 . 5
s3 + 2s2 + 3s

.

L = tf(2.5,[1 2 3 0]);

To model the uncertainty, first use getDGM to convert the gain and phase variation into a disk-based
gain-margin range. Because the gain can increase or decrease by the same amount, you can use the
'balanced' option to model a disk of uncertainty that is symmetric around the nominal value.

GM = db2mag(6);
PM = 30;
DGM = getDGM(GM,PM,'balanced')

DGM = 1×2

    0.5012    1.9953

DGM defines a disk of uncertainty with gain variations in the range given by DGM, and phase variations
determined by the geometry of the disk. Use DGM to create a umargin block.

F = umargin('F',DGM)

F = 
  Uncertain gain/phase "F" with relative gain change in [0.501,2] and phase change of ±36.8 degrees.

F represents the smallest uncertainty disk that can capture both the target gain and phase variation.
The actual phase variation modeled by F is a little bigger than the target range of ±30°. To visualize
the full range of gain and phase variations represented by F, including simultaneous gain and phase
variations, use plot.

plot(F)
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The right plot shows the range of values in the complex plane that the multiplicative factor F can
take. The size of the disk determines the amount of variation. The shaded region on the left plot
shows the simultaneous variations of gain and phase encompassed in F. For more details about this
uncertainty model, see “Stability Analysis Using Disk Margins”.

To incorporate the gain and phase uncertainty into a model of the closed-loop system, insert it into
the feedback loop as a multiplicative factor on the open-loop response.

T = feedback(L*F,1)

T =

  Uncertain continuous-time state-space model with 1 outputs, 1 inputs, 3 states.
  The model uncertainty consists of the following blocks:
    F: Uncertain gain/phase, gain × [0.501,2], phase ± 36.8 deg, 1 occurrences

Type "T.NominalValue" to see the nominal value, "get(T)" to see all properties, and "T.Uncertainty" to interact with the uncertain elements.

The result is an uncertain state-space (uss) model with one control design block, F. Examine the
effect of the modeled gain and phase uncertainty on the step response of the closed-loop system.
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figure;
rng default  % for reproducibility
step(T)

You can perform addition analysis with this model, such as analyzing the system robustness against
the modeled gain and phase variation with robstab. Or, you can use musyn to design a robust
controller for the uncertain system L*F. For examples, see

• “Model Gain and Phase Uncertainty in Feedback Loops”
• “Robust Controller for Spinning Satellite”

Gain Variations Skewed Toward Increase or Decrease

Create a umargin block that models gain that can decrease by 10% but increase by 60% in the
absence of phase variation, and a phase variation of ±15° in the absence of gain variation. To do so,
use getDGM with the 'tight' option. This option finds the smallest disk that captures the gain and
phase ranges you provide.

DGM = getDGM([0.9,1.6],[-15,15],'tight');
F = umargin('F',DGM)

F = 
  Uncertain gain/phase "F" with relative gain change in [0.86,1.6] and phase change of ±15 degrees.

 umargin

1-537



In this case, the smallest disk encompasses the specified phase variation, and a gain variation that is
slightly larger, but still skews toward increases in gain. Visualize the corresponding disk and the
ranges of gain and phase variations modeled by F.

plot(F)

The left-hand plot shows that the modeled gain variation is not symmetric around the nominal value.

Generate another umargin block, this time using the 'balanced' option in getDGM.

DGMb = getDGM([0.9,1.6],[-15,15],'balanced');
Fb = umargin('Fb',DGMb);

Compare the uncertainty disk modeled by each block.

figure;
diskmarginplot([F.GainChange;Fb.GainChange],'disk')
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The disk of Fb models a larger, symmetric gain range (gmin = 1/gmax) and larger phase variations
than the ones you specify. If you are confident that gain varies more in one direction than the other in
your system, then this balanced model might be overly conservative.

Gain and Phase Variations in a MIMO Feedback Loop

The umargin block represents a SISO gain and phase uncertainty. To model gain and phase
variations in a MIMO feedback loop, create a umargin block for each location in the loop at which
you want to introduce gain and phase variation. For instance, consider the two-input, two-output
feedback loop of the example “MIMO Stability Margins for Spinning Satellite”.

Suppose that you want to study the system's behavior with gain and phase variations at the plant
inputs and outputs. You can model those variations by creating separate umargin blocks for each
channel, and building them into the closed-loop model.
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Create the plant and controller models from “MIMO Stability Margins for Spinning Satellite”. The
plant is a two-input, two-output state-space model, and the feed-forward filter Kf is a two-input, two-
output static gain.

% Plant
a = 10;
A = [0 a;-a 0];
B = eye(2);
C = [1 a;-a 1];
D = 0;
P = ss(A,B,C,D);

% Prefilter
Kf = [1 -a;a 1]/(1+a^2);

Next, create the umargin blocks to represent the gain and phase uncertainty in each channel.
Suppose that you want to model a gain uncertainty of about 5% in either direction at all four
locations. Create a umargin block to model this uncertainty.

GM = 1.05;
u1 = umargin('u1',GM)

u1 = 
  Uncertain gain/phase "u1" with relative gain change in [0.952,1.05] and phase change of ±2.79 degrees.

umargin converts the specifed gain variation of ±5% to a disk-based uncertainty model, which also
allows phase changes of about ±3°. Use plot to visualize the disk and the modeled range of gain and
phase variation at each input and output.

plot(u1)
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To get the best estimates of the impact of gain and phase uncertainty on system performance, you
want the gain and phase to vary independently at each of the four locations. Therefore, create
additional umargin blocks for each plant input and output, with the same gain specification.

u2 = umargin('u2',GM);
y1 = umargin('y1',GM);
y2 = umargin('y2',GM);

Build the closed-loop model, inserting u1 and u2 at the plant inputs, and y1 and y2 at the plant
outputs. To do this, use blkdiag to combine u1 and u2 into a two-input, two-output system of the
form [u1,0;0,u2]. Create a similar combination of y1 and y2.Then connect these with the plant,
and use the feedback command to close the two-channel feedback loop.

Fu = blkdiag(u1,u2);
Fy = blkdiag(y1,y2);
L = Fy*P*Fu;    
Tunc = feedback(L,eye(2))*Kf

Tunc =

  Uncertain continuous-time state-space model with 2 outputs, 2 inputs, 2 states.
  The model uncertainty consists of the following blocks:
    u1: Uncertain gain/phase, gain × [0.952,1.05], phase ± 2.79 deg, 1 occurrences
    u2: Uncertain gain/phase, gain × [0.952,1.05], phase ± 2.79 deg, 1 occurrences
    y1: Uncertain gain/phase, gain × [0.952,1.05], phase ± 2.79 deg, 1 occurrences
    y2: Uncertain gain/phase, gain × [0.952,1.05], phase ± 2.79 deg, 1 occurrences

Type "Tunc.NominalValue" to see the nominal value, "get(Tunc)" to see all properties, and "Tunc.Uncertainty" to interact with the uncertain elements.
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Examine the effect of these variations on the system response.

rng(1)  % for reproducibility
figure
step(Tunc,Tunc.NominalValue,10)

These small uncertainties have a considerable impact on system performance, sometimes even
changing the sign of the response. Robustness analysis with robstab shows that only a slightly
larger variation drives the closed-loop system unstable.

stabmarg = robstab(Tunc)

stabmarg = struct with fields:
           LowerBound: 1.0210
           UpperBound: 1.0231
    CriticalFrequency: 1.0000e-04

Check Robustness to Gain and Phase Variations

The requirement that a closed-loop system is robust against a particular amount of gain and phase
uncertainty is equivalent to saying that the system has that amount of gain and phase margin. You
can therefore use a umargin block to check the gain and phase margins of a system that also
requires robustness against other types of uncertainty. To do so, capture your required disk margins
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in a umargin block, and use robstab to check robust stability against all uncertainty modeled in the
system.

Consider the following closed-loop system with parameter uncertainty.

k = ureal('k',10,'Percent',40);
G = tf(18,[1 k k]);
C = pid(1,2);
CL = feedback(G*C,1);

robstab shows that the system is robust against the modeled uncertainty. In fact, the system
remains stable up two a little more than twice the modeled uncertainty.

stabmarg = robstab(CL)

stabmarg = struct with fields:
           LowerBound: 2.0458
           UpperBound: 2.0458
    CriticalFrequency: 4.4517

Suppose that you also require the system to tolerate gain increase or decrease of up to 50% and
phase variation of up to ±20° at the plant input. To check whether the system has these margins,
create a umargin block that models these variations and insert it into the closed-loop model.

DGM = getDGM(1.5,20,'tight');
F = umargin('F');
Gf = G*F;
CLf = feedback(Gf*C,1);

stabmarg = robstab(CLf)

stabmarg = struct with fields:
           LowerBound: 1.0934
           UpperBound: 1.0956
    CriticalFrequency: 3.9583

This result shows that in addition to robust stability against parameter variation, the feedback loop
also maintains the desired gain and phase margins for all modeled values of k (actually for about 9%
more than the modeled range of k).

You can also use the equivalence between disk margins and robust stability to gain and phase
variations to design a robust controller that satisfies certain gain and phase margins. For examples,
see “Design Robust Controller With Specified Gain and Phase Margins” on page 1-543 and “Robust
Controller for Spinning Satellite”.

Design Robust Controller With Specified Gain and Phase Margins

The robust controller returned by musyn optimizes robust performance of uncertain feedback
systems. When the uncertain plant contains umargin blocks, this requirement of robust stability is
equivalent to enforcing disk-based gain and phase margins equal to the umargin uncertainty. In this
example, design a robust controller for an uncertain plant, enforcing closed-loop stability against gain
and phase variations at the plant inputs and outputs.
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Use the plant from the example "Loop Shaping with mixsyn" on the mixsyn reference page,
introducing some uncertainty in the location of the system poles and zero.

a = ureal('a',1,'PlusMinus',[-0.1,0.1]);
s = zpk('s');
G = (s-a)/(s+a)^2;

The goal is to enforce closed-loop stability against gain and phase variation at the plant inputs and
outputs, over the full range of parameter variation modeled in the plant G. To do so, use the target
gain and phase margins to create umargin uncertain blocks and attach them to the plant. For this
example, suppose that you want stability against gain variations of a factor of 1.5 in either direction,
or phase variations of ±20°.

DGM = getDGM(1.5,20,'tight');
Fin = umargin('Fin',DGM);
Fout = umargin('Fout',DGM);
Gmarg = Fout*G*Fin

Gmarg =

  Uncertain continuous-time state-space model with 1 outputs, 1 inputs, 7 states.
  The model uncertainty consists of the following blocks:
    Fin: Uncertain gain/phase, gain × [0.667,1.5], phase ± 22.6 deg, 1 occurrences
    Fout: Uncertain gain/phase, gain × [0.667,1.5], phase ± 22.6 deg, 1 occurrences
    a: Uncertain real, nominal = 1, variability = [-0.1,0.1], 3 occurrences

Type "Gmarg.NominalValue" to see the nominal value, "get(Gmarg)" to see all properties, and "Gmarg.Uncertainty" to interact with the uncertain elements.

For tuning with musyn, you augment the plant with weighting functions that enforce your
performance requirement such as reference tracking, disturbance rejection, and robustness. For this
example, use the weighting functions described in the example on the on the mixsyn reference page.

W1 = makeweight(10,[1 0.1],0.01);
W2 = makeweight(0.1,[32 0.32],1);
W3 = makeweight(0.01,[1 0.1],10);

Gaug = augw(Gmarg,W1,W2,W3);

Use musyn to design a controller.

[K,gam] = musyn(Gaug,1,1);

D-K ITERATION SUMMARY:
-----------------------------------------------------------------
                       Robust performance               Fit order
-----------------------------------------------------------------
  Iter         K Step       Peak MU       D Fit             D
    1           7.753        1.527        1.539            24
    2           1.131        1.084        1.093            38
    3          0.9987        0.996        1.005            36
    4          0.9961       0.9945       0.9973            36
    5          0.9957       0.9942       0.9963            36

Best achieved robust performance: 0.994

musyn achieves a robust performance of about 1, which tells you that the closed-loop gain remains
below 1 for the full range of uncertainty specified in the plant. To confirm that the resulting controller
achieves the target gain and phase margins, use wcdiskmargin to examine the worst-case gain and
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phase margins of the system against simultaneous variations at the plant inputs and outputs. Use the
plant G that contains the parameter uncertainty but not the gain and phase uncertainty.

MMIO = wcdiskmargin(G,K)

MMIO = struct with fields:
           GainMargin: [0.6027 1.6592]
          PhaseMargin: [-27.8448 27.8448]
           DiskMargin: 0.4958
           LowerBound: 0.4958
           UpperBound: 0.4968
    CriticalFrequency: 1
    WorstPerturbation: [1x1 struct]

The worst-case disk-based gain margin of [0.6 1.66] is slightly larger than the target margin of [0.66
1.5], and the worst-case phase margin of ±28° is likewise better than the required margin of ±20°.
Thus, the controller K enforces the desired margins for the entire parameter-uncertainty range of the
plant G.

For an example that uses umargin blocks with musyn to enforce gain and phase margins in a MIMO
control loop, see “Robust Controller for Spinning Satellite”.

Algorithms
umargin models gain and phase variations in an individual feedback channel as a frequency-
dependent multiplicative factor F(s) multiplying the nominal open-loop response L(s), such that the
perturbed response is L(s)F(s). The factor F(s) is parameterized by:

F s = 1 + α 1− σ /2 δ s
1− α 1 + σ /2 δ s .

In this model,

• δ(s) is a gain-bounded dynamic uncertainty, normalized so that it always varies within the unit disk
(||δ||∞ < 1).

• ɑ sets the amount of gain and phase variation modeled by F. For fixed σ, the parameter ɑ controls
the size of the disk. For ɑ = 0, the multiplicative factor is 1, corresponding to the nominal L.

• σ, called the skew, biases the modeled uncertainty toward gain increase or gain decrease.

The factor F takes values in a disk centered on the real axis and containing the nominal value F = 1.
The disk is characterized by its intercept DGM = [gmin,gmax] with the real axis. gmin < 1 and
gmin > 1 are the minimum and maximum relative changes in gain modeled by F, at nominal phase.
The phase uncertainty modeled by F is the range DPM = [pmin,pmax] of phase values at the
nominal gain (|F| = 1). For instance, in the following plot, the right side shows the disk F that
intersects the real axis in the interval [0.71,1.4]. The left side shows that this disk models a gain
variation of ±3 dB and a phase variation of ±19°.

F = umargin('F',1.4125)
plot(F)
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When you create a umargin block, you specify the amount of uncertainty by specifying DGM. Use
getDGM to translate specific amounts of gain and phase variations in to a suitable DGM range that
captures these variations. For more information about the uncertainty model used by umargin, see
“Stability Analysis Using Disk Margins”.

Compatibility Considerations
Eccentricity property renamed to Skew
Not recommended starting in R2020b

The Eccenticity property of the umargin control design block has been renamed to Skew. If your
code uses this property, consider modifying it to use the new property name. For additional details
about Skew and how it affects the disk-based uncertainty model, see “Stability Analysis Using Disk
Margins”.

See Also
plot (umargin) | diskmargin

Topics
“Model Gain and Phase Uncertainty in Feedback Loops”
“Robust Controller for Spinning Satellite”
“Stability Analysis Using Disk Margins”
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Introduced in R2020a
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umat
Create uncertain matrix

Syntax
M = umat(A)

Description
Uncertain matrices are rational expressions involving uncertain elements of type ureal, ucomplex,
or ucomplexm. Use uncertain matrices for worst-case gain analysis and for building uncertain state-
space (uss) models.

Create uncertain matrices by creating uncertain elements and combining them using arithmetic and
matrix operations. For example:

 p = ureal('p',1);
 M = [0 p; 1 p^2]

creates a 2-by-2 uncertain matrix (a umat object) with the uncertain parameter p.

The syntax M = umat(A) converts the double array A to a umat object with no uncertainty.

Most standard matrix manipulations are valid on uncertain matrices, including addition,
multiplication, inverse, horizontal and vertical concatenation. Specific rows/columns of an uncertain
matrix can be referenced and assigned also.

If M is a umat, then M.NominalValue is the result obtained by replacing each uncertain element in M
with its own nominal value.

If M is a umat, then M.Uncertainty is an object describing all the uncertain elements in M. All
element can be referenced and their properties modified with this Uncertainty gateway. For
instance, if B is an uncertain real parameter in M, then M.Uncertainty.B accesses the uncertain
element B in M.

Examples
Create 3 uncertain elements and then a 3-by-2 umat.

a = ureal('a',5,'Range',[2 6]); 
b = ucomplex('b',1+j,'Radius',0.5); 
c = ureal('c',3,'Plusminus',0.4); 
M = [a b;b*a 7;c-a b^2] 

M is an uncertain matrix (umat object) with the uncertain parameters a, b, and c.

View the properties of M with get

get(M) 

The nominal value of M is the result when all atoms are replaced by their nominal values.
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M.NominalValue 
ans = 
   5.0000             1.0000 + 1.0000i 
   5.0000 + 5.0000i   7.0000          
  -2.0000                  0 + 2.0000i 

Change the nominal value of a within M to 4. The nominal value of M reflects this change.

M.Uncertainty.a.NominalValue = 4; 
M.NominalValue 
ans = 
   4.0000             1.0000 + 1.0000i 
   4.0000 + 4.0000i   7.0000          
  -1.0000                  0 + 2.0000i 

Get a random sample of M, obtained by taking random samples of the uncertain atoms within M.

usample(M) 
ans = 
   2.0072             0.8647 + 1.3854i 
   1.7358 + 2.7808i   7.0000          
   1.3829            -1.1715 + 2.3960i 

Select the 1st and 3rd rows, and the 2nd column of M. The result is a 2-by-1 umat, whose dependence
is only on b.

M([1 3],2)  

See Also
ureal | ultidyn | ucomplex | ucomplexm | usample | umargin

Introduced before R2006a
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uplot
Plot multiple frequency response objects and doubles on same graph

Syntax
uplot(G1)

uplot(G1,G2)

uplot(G1,Xdata,Ydata)

uplot(G1,Xdata,Ydata,...)

uplot(G1,linetype)

uplot(G1,linetype,G2,...)

uplot(G1,linetype,Xdata,Ydata,linetype)

uplot(type,G1,linetype,Xdata,Ydata,linetype)

H = uplot(G1)

H = uplot(G1,G2)

H = uplot(G1,Xdata,Ydata)

H = uplot(G1,Xdata,Ydata,...)

H = uplot(G1,linetype)

H = uplot(G1,linetype,G2,...)

H = uplot(G1,linetype,Xdata,Ydata,linetype)

Description
uplot plots double and frd objects. The syntax is the same as the MATLAB plot command except
that all data is contained in frd objects, and the axes are specified by type.

The (optional) type argument must be one of

Type Description
'iv,d' Data versus independent variable (default)
'iv,m' Magnitude versus independent variable
'iv,lm' log(magnitude) versus independent variable
'iv,p' Phase versus independent variable
'liv,m' Magnitude versus log(independent variable)
'liv,d' Data versus log(independent variable)
'liv,m' Magnitude versus log(independent variable)
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Type Description
'liv,lm' log(magnitude) versus log(independent variable)
'liv,p' Phase versus log(independent variable)
'r,i' Real versus imaginary (parametrize by independent variable)
'nyq' Real versus imaginary (parametrize by independent variable)
'nic' Nicholas plot
'bode' Bode magnitude and phase plot

The remaining arguments of uplot take the same form as the MATLAB plot command. Line types
(for example,'+', 'g-.', or '*r') can be optionally specified after any frequency response
argument.

There is a subtle distinction between constants and frd objects with only one independent variable.
A constant is treated as such across all frequencies, and consequently shows up as a line on any
graph with the independent variable as an axis. A frd object with only one frequency point always
shows up as a point. You might need to specify one of the more obvious point types in order to see it
(e.g., '+', 'x', etc.).

Examples

Plot Multiple Frequency Responses

Create two SISO second-order systems, and calculate their frequency responses over different
frequency ranges.

a1 = [-1,1;-1,-0.5];
b1 = [0;2]; c1 = [1,0]; d1 = 0; 
sys1 = ss(a1,b1,c1,d1); 
a2 = [-.1,1;-1,-0.05]; 
b2 = [1;1]; c2 = [-0.5,0]; d2 = 0.1; 
sys2 = ss(a2,b2,c2,d2); 
omega = logspace(-2,2,100); 
sys1g = frd(sys1,omega); 
omega2 = [ [0.05:0.1:1.5] [1.6:.5:20] [0.9:0.01:1.1] ]; 
omega2 = sort(omega2); 
sys2g = frd(sys2,omega2);

Create an frd object with a single frequency.

sys3 = rss(1,1,1);
rspot = frd(sys3,2);

The following plot uses the plot_type specification 'liv,lm'.

uplot('liv,lm',sys1g,'b-.',rspot,'r*-',sys2g);
xlabel('log independent variable') 
ylabel('log magnitude') 
title('axis specification: liv,lm')
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See Also
bode | plot | nichols | nyquist | semilogx | semilogy | sigma

Introduced before R2006a
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ureal
Uncertain real parameter

Description
Use the ureal uncertain element to represent real numbers whose values are uncertain when
modeling dynamic systems with uncertainty. An uncertain real parameter has a nominal value, stored
in the NominalValue property, and an uncertainty, which is the potential deviation from the nominal
value. ureal stores this deviation equivalently in three different properties:

• PlusMinus — The additive relative deviation from NominalValue
• Range — The absolute range of values, expressed as an interval containing NominalValue
• Percentage — The deviation, expressed as a percentage of NominalValue

When you create an uncertain real parameter, you can specify the uncertainty in any of these three
ways. The ureal object automatically calculates the appropriate values for the other two properties.

You can combine ureal uncertain parameters with numeric parameters to create uncertain matrices
(umat objects) which you can then use to create uncertain state-space models. Or, you can use them
as coefficients in transfer functions. When you use uncertain real parameters to build uncertain
dynamic systems, the result is an uncertain model such as a uss or genss model.

Creation

Syntax
p = ureal(name,nominalvalue)
p = ureal(name,nominalvalue,'PlusMinus',plusminus)
p = ureal(name,nominalvalue,'Range',range)
p = ureal(name,nominalvalue,'Percentage',percentage)
p = ureal(name,nominalvalue, ___ ,Name,Value)

Description

p = ureal(name,nominalvalue) creates an uncertain real parameter with the specified nominal
value and an uncertainty of ±1. This syntax sets the Name and NominalValue properties of the
resulting ureal object.

p = ureal(name,nominalvalue,'PlusMinus',plusminus) sets the uncertainty to the
specified deviations from the nominal value. plusminus is a two-element vector of the form [-
DL,DR]. The uncertain parameter takes values in the range [nominalvalue-DL,nominalvalue
+DR]. If the range is symmetric around the nominal value such that DL = DR, you can use
plusminus = DR.

Using this syntax also sets the Mode property of the resulting ureal object to 'PlusMinus'.
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p = ureal(name,nominalvalue,'Range',range) sets the uncertainty to the specified absolute
range. range is a two-element vector of the form [LOW,HIGH], and the nominal value must fall in
this range.

Using this syntax also sets the Mode property of the resulting ureal object to 'Range'.

p = ureal(name,nominalvalue,'Percentage',percentage) sets the uncertainty in terms of
percentage deviations from the nominal value. percentage is a two-element vector of the form [-
PL,PR]. This syntax sets the lower and upper limits of the uncertainty range such that PL = 100*|
1-LOW/nominalvalue| and PR = 100*|1-HIGH/nominalvalue|.

Using this syntax also sets the Mode property of the resulting ureal object to 'Percentage'.

p = ureal(name,nominalvalue, ___ ,Name,Value) sets additional properties using name-value
pairs. You can specify multiple name-value pairs. Enclose each property name in single quotes.

Properties
NominalValue — Nominal value
scalar

Nominal value of the uncertain parameter, specified as a real scalar.

Mode — Independent quantification of uncertainty
'PlusMinus' | 'Range' | 'Percentage'

Independent quantification of uncertainty, specified as 'PlusMinus', 'Range', or 'Percentage'.
The ureal object stores the uncertainty as a relative deviation from nominal, an absolute range of
possible values, and a percentage deviation from nominal. This property specifies which of these
three ways of expressing the uncertainty is independent of the nominal value. For instance, if p.Mode
= 'Range', then changing the nominal value has no effect on p.Range, but does change the value of
both p.PlusMinus and p.Percentage.

The initial value of this property depends on how you create the ureal object. For instance, the
following code creates pl with p1.Mode = 'PlusMinus' and p2 with p2.Mode = 'Percentage'.

p1 = ureal('p1',2);
p2 = ureal('p2',2,'Percentage',[-10 20]);

Range — Range of variation
two-element vector

Range of variation of the uncertain parameter, specified as a two-element vector of the form
[LOW,HIGH], where LOW and HIGH are real scalars. The uncertain parameter can take any value
within this range. The nominal value must fall within this range.

PlusMinus — Deviation from nominal value
[-1 1] (default) | two-element vector

Deviation from nominal value, specified as a two-element vector of the form [-DL,DR], where DL and
DR are real positive scalars. The uncertain parameter can take any value in the range
[NominalValue-DL,NominalValue+DR]. If you do not specify the uncertainty in any form when
you create the ureal parameter, then the default uncertainty is PlusMinus = [-1,1].
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Percentage — Percentage deviation from nominal value
two-element vector

Percentage deviation from nominal value, specified as a two-element vector of the form [-PL,PR],
where PL and PR are real positive scalars. These values set the range of uncertainty such that PL =
100*|1-LOW/NominalValue| and PR = 100*|1-HIGH/NominalValue|, where [LOW,HIGH] is
the value of the Range property.

AutoSimplify — Block simplification level
'basic' (default) | 'full' | 'off'

Block simplification level, specified as 'basic', 'full', or 'off'. In general, when you combine
uncertain elements to create uncertain state-space models, the software automatically applies
techniques to eliminate redundant copies of the uncertain elements. (See simplify.) Use this
property to specify the simplification to apply when you use model arithmetic or interconnection
techniques with the uncertain block.

• 'basic' — Apply the elementary simplification method after each arithmetical or interconnection
operation.

• 'full' — Apply techniques similar to model reduction.
• 'off' — Perform no simplification.

Name — Name of uncertain element
character vector

Name of the uncertain element, specified as a character vector. When you create an uncertain model
or uncertain matrix using uncertain control design blocks, the software tracks the blocks using the
name you specify in this property, not the variable name in the MATLAB workspace. For example, use
the following code to create a ureal parameter and an uncertain dynamic system model.

p1 = ureal('w0',10);
sys = tf(p1,[1 p1])

sys =

  Uncertain continuous-time state-space model with 1 outputs, 1 inputs, 1 states.
  The model uncertainty consists of the following blocks:
    w0: Uncertain real, nominal = 10, variability = [-1,1], 1 occurrences

The Blocks property of the resulting uss model lists the uncertain control design block using w0,
which is the Name property of the uncertain parameter used to create sys.

Object Functions
You can use ureal parameters with functions for creating dynamic systems such as tf and ss. You
can also combine them with existing dynamic systems models using model arithmetic or commands
such as feedback. Doing so creates an uncertain state-space model. You can also combine ureal
parameters using common arithmetic operations, which generally results in an uncertain matrix
(umat object). Use functions such as actual2normalized and uscale to transform or scale the
amount of uncertainty in a ureal parameter. You can also use commands such as usample or usubs
to replace real parameters with fixed values. The gridureal command evaluates a ureal parameter
over its range and returns a grid of sampled values.
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The following list contains a representative subset of the functions you can use with ureal
parameter objects.
actual2normalized Transform actual values to normalized values
append Group models by appending their inputs and outputs
feedback Feedback connection of multiple models
get Access model property values
getLimits Validity range for uncertain real (ureal) parameters
getNominal Nominal value of uncertain model
gridureal Grid ureal parameters uniformly over their range
isuncertain Check whether argument is uncertain class type
normalized2actual Convert value for atom in normalized coordinates to corresponding actual value
replaceBlock Replace or update control design blocks in generalized LTI model
rsampleBlock Randomly sample Control Design blocks in generalized model
sampleBlock Sample Control Design blocks in generalized model
ss State-space model
tf Transfer function model
umat Create uncertain matrix
usample Generate random samples of uncertain or generalized model
uscale Scale uncertainty of block or system
usubs Substitute given values for uncertain elements of uncertain objects

Examples

Uncertain Real Parameter with Specified Deviation from Nominal

Create an uncertain real parameter with a nominal value of 10, and an uncertainty range of ±2.
Because this uncertainty is symmetric, you can specify it by setting PlusMinus to 2, instead of
explicitly setting it to [-2,2].

p1 = ureal('p1',10,'PlusMinus',2)

p1 = 
  Uncertain real parameter "p1" with nominal value 10 and variability [-2,2].

Create another parameter with a nominal value of 10, this time with an asymmetric uncertainty such
that the value can decrease by 2 from the nominal but can increase by 5.

p2 = ureal('p2',10,'PlusMinus',[-2 5])

p2 = 
  Uncertain real parameter "p2" with nominal value 10 and variability [-2,5].

Examine the properties of the parameter. The Range and Percentage properties are automatically
set to values corresponding to this variability.

get(p2)

    NominalValue: 10
            Mode: 'PlusMinus'
           Range: [8 15]
       PlusMinus: [-2 5]
      Percentage: [-20 50]
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    AutoSimplify: 'basic'
            Name: 'p2'

Because you specified PlusMinus to create the parameter, the Mode property initializes to
PlusMinus. In this mode, when you change the nominal value, PlusMinus remains fixed, while
Percentage and Range change to reflect the new range of values the parameter can take. See
“Change Nominal Value or Uncertainty of Existing Parameter” on page 1-558.

Uncertain Real Parameter with Specified Range of Values

Create an uncertain real parameter whose value can vary from 14 to 19, with a nominal value of 15.5.
To do so, set the Range property to the lowest and highest values the parameter can take.

p1 = ureal('p1',15.5,'Range',[14,19])

p1 = 
  Uncertain real parameter "p1" with nominal value 15.5 and range [14,19].

Examine the properties of the parameter. The PlusMinus and Percentage properties are
automatically set to the corresponding values. The Mode property is set to 'Range'.

get(p1)

    NominalValue: 15.5000
            Mode: 'Range'
           Range: [14 19]
       PlusMinus: [-1.5000 3.5000]
      Percentage: [-9.6774 22.5806]
    AutoSimplify: 'basic'
            Name: 'p1'

Uncertain Real Parameter with Specified Percentage Variation

Create an uncertain real parameter with a nominal value of 24, whose value can increase or decrease
by 15%. Because this uncertainty is symmetric, you can specify it by setting Percentage to 15,
instead of explicitly setting it to [-15,15].

p1 = ureal('p1',24,'Percentage',15)

p1 = 
  Uncertain real parameter "p1" with nominal value 24 and variability [-15,15]%.

Create another parameter with a nominal value of 24, this time with an asymmetric uncertainty such
that the value can decrease by 20% from the nominal but can increase by 15%.

p2 = ureal('p2',24,'Percentage',[-20,15])

p2 = 
  Uncertain real parameter "p2" with nominal value 24 and variability [-20,15]%.
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Examine the properties to see the deviation from nominal (PlusMinus) and the range of values
(Range) represented by these percentage variations.

get(p2)

    NominalValue: 24
            Mode: 'Percentage'
           Range: [19.2000 27.6000]
       PlusMinus: [-4.8000 3.6000]
      Percentage: [-20 15]
    AutoSimplify: 'basic'
            Name: 'p2'

Change Nominal Value or Uncertainty of Existing Parameter

A ureal parameter stores the uncertainty as a relative deviation from nominal (PlusMinus), an
absolute range of possible values (Range), and a percentage deviation from nominal (Percentage).
The Mode property specifies which of these three does not change when you change the nominal
value of the parameter. For instance, create a parameter with a nominal value of 10 and a relative
deviation of ±2.

p1 = ureal('p1',10,'PlusMinus',[-2,2])

p1 = 
  Uncertain real parameter "p1" with nominal value 10 and variability [-2,2].

Examine the values of the other properties.

get(p1)

    NominalValue: 10
            Mode: 'PlusMinus'
           Range: [8 12]
       PlusMinus: [-2 2]
      Percentage: [-20 20]
    AutoSimplify: 'basic'
            Name: 'p1'

In PlusMinus mode, when you change the nominal value, the PlusMinus property remains fixed,
and the values of the other two ways of expressing the uncertainty are updated to reflect the new
values. For instance, change the nominal value to 20.

p1.NominalValue = 20;
get(p1)

    NominalValue: 20
            Mode: 'PlusMinus'
           Range: [18 22]
       PlusMinus: [-2 2]
      Percentage: [-10 10]
    AutoSimplify: 'basic'
            Name: 'p1'

The new uncertain parameter has the same PlusMinus value, but the range and percentage are
adjusted to the new values that correspond to 20±2.
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If you change the PlusMinus value, the Range and Percentage values are updated to reflect the
new uncertainties. The nominal value is unchanged.

p1.PlusMinus = [-4 4];
get(p1)

    NominalValue: 20
            Mode: 'PlusMinus'
           Range: [16 24]
       PlusMinus: [-4 4]
      Percentage: [-20 20]
    AutoSimplify: 'basic'
            Name: 'p1'

Next, change the parameter to Range mode. In this mode, when you change the nominal value,
Range remains fixed at [16 24], while Percentage and PlusMinus are updated.

p1.Mode = 'Range';
p1.NominalValue = 22;
get(p1)

    NominalValue: 22
            Mode: 'Range'
           Range: [16 24]
       PlusMinus: [-6 2]
      Percentage: [-27.2727 9.0909]
    AutoSimplify: 'basic'
            Name: 'p1'

Second-Order System with Uncertain Frequency and Damping

Create a model of a second-order system with natural frequency of ω0 = 10±3 rad/s and a damping
ratio that can vary from 0.5 to 0.8, with a nominal value of ζ = 0.6.

First, represent the natural frequency and damping ratio values as uncertain real parameters.

w0 = ureal('w0',10,'PlusMinus',[-3 3]);
zeta = ureal('zeta',0.6,'Range',[0.5 0.8]);

Next, use the parameters to specify the coefficients of a transfer function.

sys = tf(1,[1/w0^2 2*zeta/w0 1])

sys =

  Uncertain continuous-time state-space model with 1 outputs, 1 inputs, 2 states.
  The model uncertainty consists of the following blocks:
    w0: Uncertain real, nominal = 10, variability = [-3,3], 3 occurrences
    zeta: Uncertain real, nominal = 0.6, range = [0.5,0.8], 1 occurrences

Type "sys.NominalValue" to see the nominal value, "get(sys)" to see all properties, and "sys.Uncertainty" to interact with the uncertain elements.

sys is an uncertain state-space (uss) model that depends on the uncertain parameters w0 and zeta.
The model sys uses the Name property of the parameters to refer to them and track them.
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Examine the step response of the system to get a sense of the responses that the uncertainty
represents. The step command automatically takes a number of random samples of an uncertain
system.

step(sys,sys.NominalValue)

State-Space Model with Uncertain Entries in State-Space Matrices

You can use ureal parameters to specify uncertain elements in state-space matrices. For instance,
create three uncertain real parameters and build state-spaces matrices from them.

p1 = ureal('p1',10,'Percentage',50); 
p2 = ureal('p2',3,'PlusMinus',[-.5 1.2]); 
p3 = ureal('p3',0); 

A = [-p1 p2; 0 -p1]; 
B = [-p2; p2+p3]; 
C = [1 0; 1 1-p3]; 
D = [0; 0];

The matrices constructed with uncertain parameters, A, B, and C, are uncertain matrix (umat)
objects. Using them as inputs to ss results in a 2-output, 1-input, 2-state uncertain system.

sys = ss(A,B,C,D)
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sys =

  Uncertain continuous-time state-space model with 2 outputs, 1 inputs, 2 states.
  The model uncertainty consists of the following blocks:
    p1: Uncertain real, nominal = 10, variability = [-50,50]%, 2 occurrences
    p2: Uncertain real, nominal = 3, variability = [-0.5,1.2], 2 occurrences
    p3: Uncertain real, nominal = 0, variability = [-1,1], 2 occurrences

Type "sys.NominalValue" to see the nominal value, "get(sys)" to see all properties, and "sys.Uncertainty" to interact with the uncertain elements.

The display shows that the system includes the three uncertain parameters, referenced by the Name
properties of the ureal objects you used to create the system.

Tips
• ureal objects support uncertainty that is skewed, or asymmetric around the nominal value.

However, highly skewed ranges can lead to poor numeric conditioning and poor results.
Therefore, for meaningful results, avoid highly skewed ranges where the nominal value is orders
of magnitude closer to one end of the range than to the other.

When the uncertainty range of a ureal parameter is not centered at its nominal value, the
parameter can take only a restricted range of values. For robust stability analysis, which
sometimes requires assigning a parameter values outside the specified range, these restrictions
mean that the smallest destabilizing perturbation of the parameter might be outside the actual
range of values that the parameter can take. Use getLimits to find the restricted range of values
that a skewed ureal parameter can take. For more information, see getLimits.

Compatibility Considerations
Sampling of ureal elements is uniform in actual values
Behavior changed in R2020a

Beginning in R2020a, usample uniformly samples the actual uncertainty range of ureal objects.
Previously, usample first normalized the uncertain element, and then sampled uniformly in the
normalized range. As a result of this change, you might obtain different results when you use
usample to sample ureal elements or uss models that contain them, even if you use the same
random seed.

The new implementation yields more uniform sampling for ureal parameters with skewed ranges
(nominal value closer to one end of the range than the other).

See Also
uss | ucomplex | umat | getLimits | umargin | uscale | ultidyn

Topics
“Uncertain Real Parameters”
“Uncertain State-Space Models”
“Building and Manipulating Uncertain Models”

Introduced before R2006a
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usample
Generate random samples of uncertain or generalized model

Syntax
B = usample(A);

B = usample(A,N)

[B,SampleValues] = usample(A,N)

[B,SampleValues] = usample(A,Names,N)

[B,SampleValues] = usample(A,Names1,N1,Names2,N2,...)

[B,SampleValues] = usample(A,N,Wmax)

[B,SampleValues] = usample(A,Names,N,Wmax)

Description
B = usample(A) substitutes a random sample of the uncertain objects in A, returning a certain (i.e.,
not uncertain) array of size [size(A)]. The input A can be any uncertain element, matrix, or
system, such as ureal, umat, uss, or ufrd. A can also be any generalized matrix or system, such as
genss or genmat, that contains uncertain blocks and other types of Control Design Blocks. If A
contains non-uncertain control design blocks, these are unchanged in B. Thus, for example, usample
applied to a genss with both tunable and uncertain blocks, the result is a genss array with only
tunable blocks.

B = usample(A,N) substitutes N random samples of the uncertain objects in A, returning a certain
(i.e., not uncertain) array of size [size(A) N].

[B,SampleValues] = usample(A,N) additionally returns the specific sampled values (as a
Struct whose field names are the names of A's uncertain elements) of the uncertain elements.
Hence, B is the same as usubs(A,SampleValues).

[B,SampleValues] = usample(A,Names,N) samples only the uncertain elements listed in the
Names variable (cell, or char array). If Names does not include all the uncertain objects in A, then B
will be an uncertain object. Any entries of Names that are not elements of A are simply ignored. Note
that usample(A,fieldnames(A.Uncertainty),N) is the same as usample(A,N).

[B,SampleValues] = usample(A,Names1,N1,Names2,N2,...) takes N1 samples of the
uncertain elements listed in Names1, and N2 samples of the uncertain elements listed in Names2, and
so on. size(B) will equal [size(A) N1 N2 ...].

The scalar parameter Wmax in

[B,SampleValues] = usample(A,N,Wmax)
[B,SampleValues] = usample(A,Names,N,Wmax) 
[B,SampleValues] = usample(A,Names,N,Wmax)

affects how ultidyn and umargin elements within A are sampled, restricting the poles of the
samples. If A is a continuous-time uss or ufrd, then the poles of sampled GainBounded ultidyn or
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umargin elements in SampleValues will each have magnitude <= BW. If A is a discrete-time, then
sampled GainBounded ultidyn or umargin elements are obtained by Tustin transformation, using
BW/(2*TS) as the (continuous) pole magnitude bound. In this case, BW should be < 1. If the
ultidyn type is PositiveReal, then the samples are obtained by bilinearly transforming (see
“Normalizing Functions for Uncertain Elements”) the GainBounded elements described above.

Examples

Sample Real Parameter

Create a real uncertain parameter, sample it, and plot a histogram of the sampled values.

A = ureal('A',5); 
Asample = usample(A,500);

Examine the size of the parameter and the sample array.

size(A)

Uncertain real scalar.

size(Asample)

ans = 1×3

     1     1   500

A is a scalar parameter. The dimensions of Asample reflect that A is a 1-by-1 parameter. Examine the
data type of Asample.

class(Asample)

ans = 
'double'

The samples of the scalar parameter are numerical values.

Plot the histogram of sampled values.

hist(Asample(:))

 usample

1-563



Sample Responses of Uncertain Control System Model

This example illustrates how to sample the open and closed-loop response of an uncertain plant
model for Monte Carlo analysis.

Create two uncertain real parameters and an uncertain plant.

gamma = ureal('gamma',4); 
tau = ureal('tau',.5,'Percentage',30); 
P = tf(gamma,[tau 1]);

Create an integral controller based on the nominal values of plant uncertainties.

KI = 1/(2*tau.Nominal*gamma.Nominal); 
C = tf(KI,[1 0]);

Now create an uncertain closed-loop system.

CLP = feedback(P*C,1);

Sample the plant at 20 values, distributed uniformly about the tau and gamma parameter cube.

[Psample1D,Values1D] = usample(P,20); 
size(Psample1D)
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20x1 array of state-space models.
Each model has 1 outputs, 1 inputs, and 1 states.

This sampling returns an array of 20 state-space models, each representing the closed-loop system
within the uncertainty.

Now sample the plant at 10 values of tau and 15 values of gamma.

[Psample2D,Values2D] = usample(P,'tau',10,'gamma',15); 
size(Psample2D)

10x15 array of state-space models.
Each model has 1 outputs, 1 inputs, and 1 states.

Plot the step responses of the 1-D sampled plant.

subplot(2,1,1); 
step(Psample1D)

Evaluate the uncertain closed-loop model at the same values using usubs, and plot the step response.

subplot(2,1,2); 
step(usubs(CLP,Values1D))
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Restrict Pole Locations in Sampled Uncertain Dynamics

To see the effect of limiting the bandwidth of sampled models with Wmax, create two ultidyn
objects.

A = ultidyn('A',[1 1]); 
B = ultidyn('B',[1 1]);

Sample 10 instances of each, using a bandwidth limit of 1 rad/sec on A, and 20 rad/sec on B.

Npts = 10; 
As = usample(A,Npts,1); 
Bs = usample(B,Npts,20);

Plot 10-second step responses, for the two sample sets.

step(As,'r',Bs,'b--',10)
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The lower bandwidth limit on the samples of A results in generally slower step responses for those
samples.

Compatibility Considerations
Sampling of ureal elements is uniform in actual values
Behavior changed in R2020a

Beginning in R2020a, usample uniformly samples the actual uncertainty range of ureal objects.
Previously, usample first normalized the uncertain element, and then sampled uniformly in the
normalized range. As a result of this change, you might obtain different results when you use
usample to sample ureal elements or uss models that contain them, even if you use the same
random seed.

The new implementation yields more uniform sampling for ureal parameters with skewed ranges
(nominal value closer to one end of the range than the other). However, highly skewed ranges can
lead to poor numeric conditioning and poor results. Therefore, for meaningful results, avoid highly
skewed ranges where the nominal value is orders of magnitude closer to one end of the range than to
the other.

See Also
usample | rsampleBlock | usubs | ufind | ureal | ucomplex | ultidyn | umat | ufrd | uss |
umargin
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usample
Generate random samples of uncertain variables in a Simulink model

Syntax
samples = usample(uvars,N)

samples = usample(uvars)

samples = usample(uvars,N,Wmax)

Description
This function is for generating random samples of uncertain variables stored in a data structure you
obtain from a Simulink model, using ufind. To generate random samples from uncertain models
(uss, ufrd) or generalized state-space models (genss, genfrd), use usample (uss).

samples = usample(uvars,N) generates N random samples of the uncertain variables in uvars.
uvars is a structure that lists uncertain variables (ureal, ucomplex, umargin, or ultidyn) by
name. You can automatically obtain uvars for a Simulink model that contains Uncertain State Space
blocks using ufind. samples is an N-by-1 structure array whose field names and values are the
names and sample values of the uncertain variables. Use this syntax, together with ufind, to
generate random samples for uncertain variables in Simulink models.

samples = usample(uvars) is equivalent to usample(uvars,1).

samples = usample(uvars,N,Wmax) specifies constraints, as described in uss/usample, for
sampling uncertain variables of type ultidyn in uvars.

Examples

Generate Random Samples of Uncertain Variables

Create a structure that contains uncertain variables a and b.

uvars = struct('a',ureal('a',5),'b',ultidyn('b',[2 3],'Bound',7))

uvars = struct with fields:
    a: [1x1 ureal]
    b: [2x3 ultidyn]

Generate a random sample of a and b.

samples = usample(uvars)

samples = struct with fields:
    a: 5.6294
    b: [2x3 ss]
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samples is also a structure, where each field contains a randomly sampled instance of the uncertain
variable type in uvars. You can use samples to simulate an uncertain Simulink model at these
values as shown in “Sample Uncertain Variables in a Simulink® Model” on page 1-570.

Sample Uncertain Variables in a Simulink® Model

Generate random samples of uncertain variables in a Simulink® model.

Open the model.

open_system('usim_model')

The model contains three Uncertain State Space blocks named Unmodeled Plant Dynamics, Plant,
and Sensor Gain. These blocks depend on three uncertain variables named input_unc, unc_pole,
and sensor_gain.

Use ufind to find all Uncertain State Space blocks and uncertain variables in the model.

uvars = ufind('usim_model');
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Use usample to generate random samples of input_unc, unc_pole, and sensor_gain. Simulate
the closed-loop response for each of these random samples.

for i=1:10;
   uval = usample(uvars);
    sim('usim_model',10);
end
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The MultiPlot Graph block displays the simulated responses.

Tutorials
“Simulate Uncertain Model at Sampled Parameter Values”

“Vary Uncertain Values Across Multiple Uncertain Blocks”

Robustness Analysis in Simulink

How To
“Simulate Uncertainty Effects”

See Also
ufind | usubs | uss | usample (uss)

Introduced before R2006a
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uscale
Scale uncertainty of block or system

Syntax
blk_scaled = uscale(blk,factor)
M_scaled = uscale(M,factor)

Description
blk_scaled = uscale(blk,factor) scales the amount of uncertainty in an uncertain control
design block by factor. Typically, factor is a robustness margin returned by robstab or robgain,
or a robust performance returned by musynperf. The uncertain element blk_scaled is of the same
type as blk, with the amount of uncertainty scaled in normalized units. For instance, if factor is
0.75, the normalized uncertainty of blk_scaled is 75% of the normalized uncertainty of blk.

M_scaled = uscale(M,factor) scales all the uncertain blocks in the model M. Non-uncertain
elements are not changed.

Examples

Find Tolerable Range of Gain and Phase Variations

Consider a feedback loop with the following open-loop gain.

L = tf(3.5,[1 2 3 0]);

Suppose that the system has gain uncertainty of 1.5 (gain can increase or decrease by a factor of 1.5)
and phase uncertainty of ±30°.

DGM = getDGM(1.5,30,'tight');
F = umargin('F',DGM)

F = 
  Uncertain gain/phase "F" with relative gain change in [0.472,1.5] and phase change of ±30 degrees.

Examine the robust stability of the closed-loop system.

T = feedback(L*F,1);
SM = robstab(T)

SM = struct with fields:
           LowerBound: 0.8303
           UpperBound: 0.8319
    CriticalFrequency: 1.4482

robstab shows that the system can only tolerate 0.83 times the modeled uncertainty before going
unstable. Scale the umargin block F by this amount to find the largest gain and phase variation that
the system can tolerate.
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factor = SM.LowerBound;
Fsafe = uscale(F,factor)

Fsafe = 
  Uncertain gain/phase "F" with relative gain change in [0.563,1.42] and phase change of ±24.8 degrees.

The scaled uncertainty has smaller ranges of both gain variation and phase variation. Compare these
ranges for the original modeled variation and the maximum tolerable variation.

DGM = F.GainChange;
DGMsafe = Fsafe.GainChange;
diskmarginplot([DGM;DGMsafe])
legend('original','safe')

Scale All Uncertain Elements in a Model

Consider the uncertain control system of the example "Robust Performance of Closed-Loop System"
on the robgain reference page. That example examines the sensitivity of the closed-loop response at
the plant output to disturbances at the plant input.

k = ureal('k',10,'Percent',40);
delta = ultidyn('delta',[1 1]); 
G = tf(18,[1 1.8 k]) * (1 + 0.5*delta);
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C = pid(2.3,3,0.38,0.001);
S = feedback(1,G*C)

S =

  Uncertain continuous-time state-space model with 1 outputs, 1 inputs, 4 states.
  The model uncertainty consists of the following blocks:
    delta: Uncertain 1x1 LTI, peak gain = 1, 1 occurrences
    k: Uncertain real, nominal = 10, variability = [-40,40]%, 1 occurrences

Type "S.NominalValue" to see the nominal value, "get(S)" to see all properties, and "S.Uncertainty" to interact with the uncertain elements.

Suppose that you do not want the peak gain of this sensitivity function to exceed 1.5. Use robgain to
find out how much of the modeled uncertainty the system can tolerate while the peak gain remains
below 1.5.

perfmarg = robgain(S,1.5)

perfmarg = struct with fields:
           LowerBound: 0.7821
           UpperBound: 0.7837
    CriticalFrequency: 7.8565

With that performance requirement, the system can only tolerate about 78% of the modeled
uncertainty. Scale all the uncertain elements in S to create a model of the closed-loop system with the
maximum level of uncertainty that meets the performance requirement.

factor = perfmarg.LowerBound;
S_scaled = uscale(S,factor)

S_scaled =

  Uncertain continuous-time state-space model with 1 outputs, 1 inputs, 4 states.
  The model uncertainty consists of the following blocks:
    delta: Uncertain 1x1 LTI, peak gain = 0.782, 1 occurrences
    k: Uncertain real, nominal = 10, variability = [-31.3,31.3]%, 1 occurrences

Type "S_scaled.NominalValue" to see the nominal value, "get(S_scaled)" to see all properties, and "S_scaled.Uncertainty" to interact with the uncertain elements.

The display shows how the uncertain elements in S_scaled have changed: the peak gain of the
ultidyn element delta is reduced from 1 to 0.78, and the range of variation of the uncertain real
parameter k is reduced from ±40% to ±31.3%.

Input Arguments
blk — Uncertain control design block
ureal | umargin | ultidyn | ...

Uncertain control design block to scale, specified as a ureal, umargin, ultidyn, or other uncertain
block.

factor — Scaling factor
scalar

Scaling factor, specified as a scalar. This argument is the amount by which uscale scales the
normalized uncertainty of blk or M. For instance, if factor = 0.8, then the function reduces the
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uncertainty to 80% of its original value, in normalized units. Similarly, if factor = 2, then the
function doubles the uncertainty.

Typically, factor is a robustness margin returned by robstab or robgain, or a robust performance
returned by musynperf. Thus, you can use uscale to find the largest range of modeled uncertainty
in a system for which the system has good robust stability or performance.

M — Uncertain model
uss | umat | ufrd | genss | ...

Uncertain model, specified as a uss, umat, ufrd, or genss with uncertain control design blocks. The
uscale command scales uncertain control design blocks in M. Other blocks of M are unchanged.

Output Arguments
blk_scaled — Scaled uncertain block
ureal | umargin | ultidyn | ...

Scaled uncertain block, returned as a block of the same type as blk, such as a ureal, umargin,
ultidyn, or other uncertain block. The uncertainty of blk_scaled is the same as the uncertainty in
M, scaled by factor.

M_scaled — Scaled uncertain model
uss | umat | ufrd | genss | ...

Scaled uncertain model, returned as a model of the same type as M, such as a uss, umat, ufrd, or
genss with uncertain control design blocks. The uncertain control design blocks in M_scaled are the
same as the blocks in M, with the size of uncertainty scaled by factor in normalized units.

See Also
normalized2actual | actual2normalized | musynperf | robstab | robgain

Introduced in R2020a
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usimfill
(Not recommended) Helper function for USS System blocks to set "User-defined Uncertainty" field or
state of "Uncertainty value" menu

Compatibility

Note usimfill is not recommended. Use ufind instead.

Syntax
usimfill(ModelName,val)

usimfill(ModelName,'Uncertainty value','Nominal')

usimfill(ModelName,'Uncertainty value','User defined')

Description
The command usimfill allows simple control of some parameters of all USS System blocks in a
Simulink model.

usimfill(ModelName,val) pushes the character vector val into the Uncertainty value name
field of all USS System blocks in the Simulink model specified by ModelName.

usimfill(ModelName,'Uncertainty value','Nominal') sets the Uncertainty value
pulldown menu to Nominal for all USS System blocks in the Simulink model specified by
ModelName. Only a limited number of characters are needed to make this specification, so
usimfill(ModelName,'U','N') accomplishes the same effect.

usimfill(ModelName,'Uncertainty value','User defined') sets the Uncertainty
value pulldown menu to User defined for all USS System blocks in the Simulink model specified
by ModelName. Only a limited number of characters are needed to make this specification, so
usimfill(ModelName,'U','U') accomplishes the same effect.

Examples
Open the model file associated with the example.

open_system('usim_model'); 
unc_pole = ureal('unc_pole',-5,'Range',[-10 -4]); 
plant = ss(unc_pole,5,1,1); 
input_unc = ultidyn('input_unc',[1 1]); 
wt = makeweight(0.25,130,2.5); 
sensor_gain = ureal('sensor_gain',1,'Range',[0.1 2]); 

This has three USS System blocks. They are plant with a ureal atom named unc_pole; input_unc
which is a ultidyn object, and sensor_gain which is a ureal atom.

Run usimfill on the model, filling in the field with the label 'newData'.
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usimfill('usim_model','newData'); 

View all of the dialog boxes, and see that 'newData' has been entered.

Run usimfill on the model, changing the Uncertainty Selection to Nominal.

usimfill('usim_model','Uncertainty value','Nominal'); 

Similarly run usimfill on the model, changing the Uncertainty Selection to User Specified
Uncertainty.

usimfill('usim_model','Uncertainty value','User defined'); 

Now generate a random sample of the uncertain atoms, and run the simulation

newData = usimsamp('usim_model',120); 
sim('usim_model'); 

See Also
usample | usiminfo | usimsamp | usubs

Introduced in R2007a
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usiminfo
(Not recommended) Find USS System blocks within specified Simulink model and check for
consistency

Compatibility

Note usiminfo is not recommended. Use ufind instead.

Syntax
[cflags,allupaths,allunames,upaths,unames,csumchar]
= usiminfo(sname, silent)

Description
The command usiminfo returns information regarding the locations of all USS System blocks within
a Simulink model and determines if these compatibility conditions are satisfied. It is possible to have
uncertain objects of the same name throughout a Simulink model. The helper functions usimsamp
and usimfill assume that these are the same uncertainty. Hence uncertain objects of the same
name should have the same object properties and Uncertainty value in the USS System pull-
down menu. usiminfo provides information about the uncertainty in the Simulink diagram sname.

The following describes the input and outputs arguments of usiminfo:

Input Arguments Description
sname Simulink diagram name
silent Display inconsistencies between uncertain atoms, when not empty. Default is

empty.

Output Arguments Description
cflag Compatibility flag set to 1 if all uncertainties are consistent, set to 0 if an

uncertainty definition(s) is consistent and set to –1 if common uncertainties
in different blocks have different Uncertainty value.

allupaths Path names of USS System blocks in the model (cell).
allunames Uncertainties names in Simulink model (cell).
upaths Path names associated with each allunames entry (cell).
unames Uncertainty names associated with each allupaths entry (cell).
csumchar Character array with description of uncertainties and their associated block

path names. Empty if there is a conflict with unames.

See Also
usample | usimfill | usimsamp | usubs
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usimsamp
(Not recommended) Generate random instance of all uncertain atoms present in all USS System
blocks of Simulink model

Compatibility

Note usimsamp is not recommended. Use usample instead.

Syntax
sample = usimsamp(ModelName)

sample = usimsamp(ModelName,BW)

Description
The command usimsamp samples a Simulink model. Note that if the model contains any USS System
blocks, then the model can be interpreted as an uncertain Simulink model. The sample generated by
usimsamp is a scalar structure, with fieldnames corresponding to the uncertain atoms within all of
the USS System blocks, and the values are specific random samples of the atoms.

For ultidyn atoms, the magnitude of the sampled poles can be limited using an optional second
bandwidth argument, BW. See usample for more information on this parameter.

Examples
Open the model file associated with the example.

open_system('usim_model'); 

This has 3 USS System blocks. They are plant with a ureal atom named unc_pole; input_unc
which is a ultidyn object, and sensor_gain which is a ureal atom.

Run usimsamp on the model, yielding a structure as described above.

unc_pole = ureal('unc_pole',-5,'Range',[-10 -4]); 
plant = ss(unc_pole,5,1,1); 
input_unc = ultidyn('input_unc',[1 1]); 
wt = makeweight(0.25,130,2.5); 
sensor_gain = ureal('sensor_gain',1,'Range',[0.1 2]); 
data = usimsamp('usim_model') 
data = 
      input_unc: [1x1 ss] 
    sensor_gain: 0.9935 
       unc_pole: -4.1308 

See Also
usample | usimfill | usiminfo | usubs
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uss
Uncertain state-space model

Description
Use uss model objects to represent uncertain dynamic systems.

The two dominant forms of model uncertainty are:

• Uncertainty in parameters of the underlying differential equation models (uncertain state-space
matrices)

• Frequency-domain uncertainty, which often quantifies model uncertainty by describing absolute or
relative uncertainty in the frequency response (uncertain or unmodeled linear dynamics)

uss model objects can represent dynamic systems with either or both forms of uncertainty. You can
use uss to perform robust stability and performance analysis and to test the robustness of controller
designs.

Creation
There are several ways to create a uss model object, including:

• Use tf with one or more uncertain real parameters (ureal). For example:

p = ureal('p',1);
usys = tf(p,[1 p]);

For another example, see “Transfer Function with Uncertain Coefficients” on page 1-592.
• Use ss with uncertain state-space matrices (umat). For example:

p = ureal('p',1);
A = [0 3*p; -p p^2];
B = [0; p];
C = ones(2);  
D = zeros(2,1);
usys = ss(A,B,C,D);

For another example, see “Uncertain State-Space Model” on page 1-593.
• Combine numeric LTI models with uncertain elements using model interconnection commands

such as connect, series, or parallel, or model arithmetic operators such as *, +, or -. For
example:

 sys = tf(1,[1 1]);
 p = ureal('p',1);
 D = ultidyn('Delta',[1 1]);
 usys = p*sys*(1 + 0.1*D);

For another example, see “System with Uncertain Dynamics” on page 1-594.
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• Convert a double array or a numeric LTI model to uss form using usys = uss(sys). In this
case, the resulting uss model object has no uncertain elements. For example:

M = tf(1,[1 1 1]);
usys = uss(M);

• Use ucover to create a uss model whose range of possible frequency responses includes all
responses in an array of numeric LTI models. The resulting model expresses the range of
behaviors as dynamic uncertainty (ultidyn).

Properties
NominalValue — Nominal value of uncertain model
ss model object

Nominal value of the uncertain model, specified as a state-space (ss) model object. The state-space
model is obtained by setting all the uncertain control design blocks of the uncertain model to their
nominal values.

Uncertainty — Uncertain elements
structure

Uncertain elements of the model, specified as a structure whose fields are the names of the uncertain
blocks, and whose values are the control design blocks themselves. Thus, the values stored in the
structure can be ureal, umat, ultidyn, or other uncertain control design blocks. For instance, the
following commands create an uncertain model usys with two uncertain parameters, p1 and p2.

p1 = ureal('p1',1);
p2 = ureal('p2',3);
A = [0 3*p1; -p1 p1^2];
B = [0; p2];
C = ones(2);
D = zeros(2,1);
usys = ss(A,B,C,D);

The Uncertainty property of usys is a structure with two fields, p1 and p2, whose values are the
corresponding ureal uncertain parameters.

usys.Uncertainty

ans = 

  struct with fields:

    p1: [1×1 ureal]
    p2: [1×1 ureal]

You can access or examine each uncertain parameter individually. For example:

get(usys.Uncertainty.p1)

    NominalValue: 1
            Mode: 'PlusMinus'
           Range: [0 2]
       PlusMinus: [-1 1]
      Percentage: [-100 100]
    AutoSimplify: 'basic'
            Name: 'p1'
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A, B, C, D, E — State-space matrices
numeric matrix | uncertain matrix

This property is read-only.

State-space matrices, specified as numeric matrices or uncertain matrices (umat). The state-space
matrices are evaluated by fixing all dynamic uncertainty blocks (udyn, ultidyn) to their nominal
values.

• A — State matrix A, specified as a square matrix or umat with as many rows and columns as there
are system states.

• B — Input-to-state matrix B, specified as a matrix or umat with as many rows as there are system
states and as many columns as there are system inputs.

• C — State-to-output matrix C, specified as a matrix or umat with as many rows as there are system
outputs and as many columns as there are system states.

• D — Feedthrough matrix D, specified as a matrix or umat with as many rows as there are system
outputs and as many columns as there are system inputs.

• E — E matrix for implicit (descriptor) state-space models, specified as a matrix or umat of the
same dimensions as A. By default E = [], meaning that the state equation is explicit. To specify
an implicit state equation E dx/dt = Ax + Bu, set this property to a square matrix of the same size
as A. See dss for more information about descriptor state-space models.

StateName — State names
{''} (default) | character vector | cell array of character vectors

State names, specified as one of these values:

• Character vector — For first-order models
• Cell array of character vectors — For models with two or more states
• '' — For unnamed states

You can specify StateName using a string, such as "velocity", but the state name is stored as a
character vector, 'velocity'.
Example: 'velocity'
Example: {'x1','x2'}

StateUnit — State units
{''} (default) | character vector | cell array of character vectors

State units, specified as one of these values:

• Character vector — For first-order models
• Cell array of character vectors — For models with two or more states
• '' — For states without specified units

Use StateUnit to keep track of the units each state is expressed in. StateUnit has no effect on
system behavior.

You can specify StateUnit using a string, such as "mph", but the state units are stored as a
character vector, 'mph'.
Example: 'mph'
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Example: {'rpm','rad/s'}

InternalDelay — Internal delays
scalar | vector

Internal delays, specified as a scalar or vector. For continuous-time models, internal delays are
expressed in the time unit specified by the TimeUnit property of the model object. For discrete-time
models, internal delays are expressed as integer multiples of the sample time Ts. For example,
InternalDelay = 3 means a delay of three sampling periods.

You can modify the values of internal delays. However, the number of entries in InternalDelay
cannot change, because it is a structural property of the model.

Internal delays arise, for example, when closing feedback loops on systems with delays, or when
connecting delayed systems in series or parallel. For more information about internal delays, see
“Closing Feedback Loops with Time Delays”.

InputDelay — Delay at inputs
0 (default) | scalar | vector

Delay at each input, specified as a scalar or a vector. For a system with Nu inputs, set InputDelay to
an Nu-by-1 vector. Each entry of this vector is a numerical value that represents the input delay for
the corresponding input channel. For continuous-time models, specify input delays in the time unit
stored in the TimeUnit property of the model object. For discrete-time models, specify input delays
in integer multiples of the sample time Ts. For example, InputDelay = 3 means a delay of three
sample times.

Set InputDelay to a scalar value to apply the same delay to all channels.

OutputDelay — Delay at outputs
0 (default) | scalar | vector

Delay at each output, specified as a scalar or a vector. For a system with Ny outputs, set
OutputDelay to an Ny-by-1 vector. Each entry of this vector is a numerical value that represents the
output delay for the corresponding output channel. For continuous-time models, specify output delays
in the time unit stored in the TimeUnit property of the model object. For discrete-time models,
specify output delays in integer multiples of the sample time Ts. For example, OutputDelay = 3
means a delay of three sample times.

Set OutputDelay to a scalar value to apply the same delay to all channels.

Ts — Sample time
0 (default) | –1 | positive scalar

Sample time, specified as:

• 0 — For continuous-time models.
• Positive scalar value — For discrete-time models. Specify the sample time in the units given in the

TimeUnit property of the model.
• –1 — For discrete-time models with unspecified sample time.

Changing this property does not discretize or resample the model. Use c2d and d2c to convert
between continuous-time and discrete-time representations. Use d2d to change the sample time of a
discrete-time system.
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TimeUnit — Model time units
'seconds' (default) | 'minutes' | 'milliseconds' | ...

Model time units, specified as one of these values:

• 'nanoseconds'
• 'microseconds'
• 'milliseconds'
• 'seconds'
• 'minutes'
• 'hours'
• 'days'
• 'weeks'
• 'months'
• 'years'

You can specify TimeUnit using a string, such as "hours", but the time units are stored as a
character vector, 'hours'.

Model properties such as sample time Ts, InputDelay, OutputDelay, and other time delays are
expressed in the units specified by TimeUnit. Changing this property has no effect on other
properties, and therefore changes the overall system behavior. Use chgTimeUnit to convert between
time units without modifying system behavior.

InputName — Names of input channels
{''} (default) | character vector | cell array of character vectors

Names of input channels, specified as one of these values:

• Character vector — For single-input models
• Cell array of character vectors — For models with two or more inputs
• '' — For inputs without specified names

You can use automatic vector expansion to assign input names for multi-input models. For example, if
sys is a two-input model, enter:

sys.InputName = 'controls';

The input names automatically expand to {'controls(1)';'controls(2)'}.

You can use the shorthand notation u to refer to the InputName property. For example, sys.u is
equivalent to sys.InputName.

Input channel names have several uses, including:

• Identifying channels on model display and plots
• Extracting subsystems of MIMO systems
• Specifying connection points when interconnecting models

You can specify InputName using a string, such as "voltage", but the input name is stored as a
character vector, 'voltage'.
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InputUnit — Units of input signals
{''} (default) | character vector | cell array of character vectors

Units of input signals, specified as one of these values:

• Character vector — For single-input models
• Cell array of character vectors — For models with two or more inputs
• '' — For inputs without specified units

Use InputUnit to keep track of the units each input signal is expressed in. InputUnit has no effect
on system behavior.

You can specify InputUnit using a string, such as "voltage", but the input units are stored as a
character vector, 'voltage'.
Example: 'voltage'
Example: {'voltage','rpm'}

InputGroup — Input channel groups
structure with no fields (default) | structure

Input channel groups, specified as a structure where the fields are the group names and the values
are the indices of the input channels belonging to the corresponding group. When you use
InputGroup to assign the input channels of MIMO systems to groups, you can refer to each group by
name when you need to access it. For example, suppose you have a five-input model sys, where the
first three inputs are control inputs and the remaining two inputs represent noise. Assign the control
and noise inputs of sys to separate groups.

sys.InputGroup.controls = [1:3];
sys.InputGroup.noise = [4 5];

Use the group name to extract the subsystem from the control inputs to all outputs.

sys(:,'controls')

Example: struct('controls',[1:3],'noise',[4 5])

OutputName — Names of output channels
{''} (default) | character vector | cell array of character vectors

Names of output channels, specified as one of these values:

• Character vector — For single-output models
• Cell array of character vectors — For models with two or more outputs
• '' — For outputs without specified names

You can use automatic vector expansion to assign output names for multi-output models. For example,
if sys is a two-output model, enter:

sys.OutputName = 'measurements';

The output names automatically expand to {'measurements(1)';'measurements(2)'}.

You can use the shorthand notation y to refer to the OutputName property. For example, sys.y is
equivalent to sys.OutputName.
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Output channel names have several uses, including:

• Identifying channels on model display and plots
• Extracting subsystems of MIMO systems
• Specifying connection points when interconnecting models

You can specify OutputName using a string, such as "rpm", but the output name is stored as a
character vector, 'rpm'.

OutputUnit — Units of output signals
{''} (default) | character vector | cell array of character vectors

Units of output signals, specified as one of these values:

• Character vector — For single-output models
• Cell array of character vectors — For models with two or more outputs
• '' — For outputs without specified units

Use OutputUnit to keep track of the units each output signal is expressed in. OutputUnit has no
effect on system behavior.

You can specify OutputUnit using a string, such as "voltage", but the output units are stored as a
character vector, 'voltage'.
Example: 'voltage'
Example: {'voltage','rpm'}

OutputGroup — Output channel groups
structure with no fields (default) | structure

Output channel groups, specified as a structure where the fields are the group names and the values
are the indices of the output channels belonging to the corresponding group. When you use
OutputGroup to assign the output channels of MIMO systems to groups, you can refer to each group
by name when you need to access it. For example, suppose you have a four-output model sys, where
the second output is a temperature, and the rest are state measurements. Assign these outputs to
separate groups.

sys.OutputGroup.temperature = [2];
sys.InputGroup.measurements = [1 3 4];

Use the group name to extract the subsystem from all inputs to the measurement outputs.

sys('measurements',:)

Example: struct('temperature',[2],'measurement',[1 3 4])

Notes — Text notes about model
[0×1 string] (default) | string | cell array of character vector

Text notes about the model, stored as a string or a cell array of character vectors. The property stores
whichever of these two data types you provide. For instance, suppose that sys1 and sys2 are
dynamic system models, and set their Notes properties to a string and a character vector,
respectively.
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sys1.Notes = "sys1 has a string.";
sys2.Notes = 'sys2 has a character vector.';
sys1.Notes
sys2.Notes

ans = 

    "sys1 has a string."

ans =

    'sys2 has a character vector.'

UserData — Data associated with model
[] (default) | any data type

Data of any kind that you want to associate and store with the model, specified as any MATLAB data
type.

Name — Model name
'' (default) | character vector

Model name, stored as a character vector. You can specify Name using a string, such as "DCmotor",
but the output units are stored as a character vector, 'DCmotor'.
Example: 'system_1'

SamplingGrid — Sampling grid for model arrays
structure with no fields (default) | structure

Sampling grid for model arrays, specified as a structure. For model arrays that are derived by
sampling one or more independent variables, this property tracks the variable values associated with
each model in the array. This information appears when you display or plot the model array. Use this
information to trace results back to the independent variables.

Set the field names of the data structure to the names of the sampling variables. Set the field values
to the sampled variable values associated with each model in the array. All sampling variables should
be numeric and scalar valued, and all arrays of sampled values should match the dimensions of the
model array.

For example, suppose you create a 11-by-1 array of linear models, sysarr, by taking snapshots of a
linear time-varying system at times t = 0:10. The following code stores the time samples with the
linear models.

 sysarr.SamplingGrid = struct('time',0:10)

Similarly, suppose you create a 6-by-9 model array, M, by independently sampling two variables, zeta
and w. The following code attaches the (zeta,w) values to M.

[zeta,w] = ndgrid(<6 values of zeta>,<9 values of w>)
M.SamplingGrid = struct('zeta',zeta,'w',w)

When you display M, each entry in the array includes the corresponding zeta and w values.

M
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M(:,:,1,1) [zeta=0.3, w=5] =
 
        25
  --------------
  s^2 + 3 s + 25
 

M(:,:,2,1) [zeta=0.35, w=5] =
 
         25
  ----------------
  s^2 + 3.5 s + 25
 
...

For model arrays generated by linearizing a Simulink model at multiple parameter values or
operating points, the software populates SamplingGrid automatically with the variable values that
correspond to each entry in the array. For example, the Simulink Control Design commands
linearize and slLinearizer populate SamplingGrid in this way.

Object Functions
Most functions that work on numeric LTI models also work on uss models. These include model
interconnection functions such as connect and feedback, and linear analysis functions such as
bode and stepinfo. Some functions that generate plots, such as bode and step, plot random
samples of the uncertain model to give you a sense of the distribution of uncertain dynamics. When
you use these commands to return data, however, they operate on the nominal value of the system
only.

In addition, you can use functions such as robstab and wcgain to perform robustness and worst-
case analysis of uncertain systems represented by uss models. You can also use tuning functions
such as systune for robust controller tuning.

The following lists contain a representative subset of the functions you can use with uss models.

Model Interconnection
feedback Feedback connection of multiple models
connect Block diagram interconnections of dynamic systems
series Series connection of two models
parallel Parallel connection of two models

Linear Analysis
step Step response plot of dynamic system; step response data
bode Bode plot of frequency response, or magnitude and phase data
sigma Singular value plot of dynamic system
margin Gain margin, phase margin, and crossover frequencies
diskmargin Disk-based stability margins of feedback loops

Robustness and Worst-Case Analysis
usample Generate random samples of uncertain or generalized model
robstab Robust stability of uncertain system
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robgain Robust performance of uncertain system
wcgain Worst-case gain of uncertain system
wcsigmaplot Plot worst-case gain of uncertain system

Control System Design and Tuning
musyn Robust controller design using mu synthesis
systune Tune fixed-structure control systems modeled in MATLAB

Examples

Transfer Function with Uncertain Coefficients

Create a second-order transfer function with uncertain natural frequency and damping coefficient.

w0 = ureal('w0',10);
zeta = ureal('zeta',0.7,'Range',[0.6,0.8]);

usys = tf(w0^2,[1 2*zeta*w0 w0^2])

usys =

  Uncertain continuous-time state-space model with 1 outputs, 1 inputs, 2 states.
  The model uncertainty consists of the following blocks:
    w0: Uncertain real, nominal = 10, variability = [-1,1], 5 occurrences
    zeta: Uncertain real, nominal = 0.7, range = [0.6,0.8], 1 occurrences

Type "usys.NominalValue" to see the nominal value, "get(usys)" to see all properties, and "usys.Uncertainty" to interact with the uncertain elements.

usys is an uncertain state-space (uss) model with two Control Design Blocks. The uncertain real
parameter w0 occurs five times in the transfer function, twice in the numerator and three times in the
denominator. To reduce the number of occurrences, you can rewrite the transfer function by dividing
numerator and denominator by w0^2.

usys = tf(1,[1/w0^2 2*zeta/w0 1])

usys =

  Uncertain continuous-time state-space model with 1 outputs, 1 inputs, 2 states.
  The model uncertainty consists of the following blocks:
    w0: Uncertain real, nominal = 10, variability = [-1,1], 3 occurrences
    zeta: Uncertain real, nominal = 0.7, range = [0.6,0.8], 1 occurrences

Type "usys.NominalValue" to see the nominal value, "get(usys)" to see all properties, and "usys.Uncertainty" to interact with the uncertain elements.

In the new formulation, there are only three occurrences of the uncertain parameter w0. Reducing
the number of occurrences of a Control Design Block in a model can improve the performance of
calculations involving the model.

Examine the step response of the system to get a sense of the range of responses that the uncertainty
represents.

step(usys)
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When you use linear analysis commands like step and bode to create response plots of uncertain
systems, they automatically plot random samples of the system. While these samples give you a sense
of the range of responses that fall within the uncertainty, they do not necessarily include the worst-
case response. To analyze worst-case responses of uncertain systems, use wcgain or wcsigmaplot.

Uncertain State-Space Model

To create an uncertain state-space model, you first use Control Design Blocks to create uncertain
elements. Then, use the elements to specify the state-space matrices of the system.

For instance, create three uncertain real parameters and build state-spaces matrices from them.

p1 = ureal('p1',10,'Percentage',50); 
p2 = ureal('p2',3,'PlusMinus',[-.5 1.2]); 
p3 = ureal('p3',0); 

A = [-p1 p2; 0 -p1]; 
B = [-p2; p2+p3]; 
C = [1 0; 1 1-p3]; 
D = [0; 0];

The matrices constructed with uncertain parameters, A, B, and C, are uncertain matrix (umat)
objects. Using them as inputs to ss results in a 2-output, 1-input, 2-state uncertain system.

sys = ss(A,B,C,D)
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sys =

  Uncertain continuous-time state-space model with 2 outputs, 1 inputs, 2 states.
  The model uncertainty consists of the following blocks:
    p1: Uncertain real, nominal = 10, variability = [-50,50]%, 2 occurrences
    p2: Uncertain real, nominal = 3, variability = [-0.5,1.2], 2 occurrences
    p3: Uncertain real, nominal = 0, variability = [-1,1], 2 occurrences

Type "sys.NominalValue" to see the nominal value, "get(sys)" to see all properties, and "sys.Uncertainty" to interact with the uncertain elements.

The display shows that the system includes the three uncertain parameters.

System with Uncertain Dynamics

Create an uncertain system comprising a nominal model with a frequency-dependent amount of
uncertainty. You can model such uncertainty using ultidyn and a weighting function that represents
the frequency profile of the uncertainty. Suppose that at low frequency, below 3 rad/s, the model can
vary up to 40% from its nominal value. Around 3 rad/s, the percentage variation starts to increase.
The uncertainty crosses 100% at 15 rad/s and reaches 2000% at approximately 1000 rad/s. Create a
transfer function with an appropriate frequency profile, Wunc, to use as a weighting function that
modulates the amount of uncertainty with frequency.

Wunc = makeweight(0.40,15,3);
bodemag(Wunc)
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Next, create a transfer function representing the nominal value of the system. For this example, use a
transfer function with a single pole at s = –60 rad/s. Then, create a ultidyn model to represent 1-
input, 1-output uncertain dynamics, and add the weighted uncertainty to the nominal transfer
function.

sysNom = tf(1,[1/60 1]);
unc = ultidyn('unc',[1 1],'SampleStateDim',3); % samples of uncertain dynamics have three states

usys = sysNom*(1 + Wunc*unc);

% Set properties of usys
usys.InputName = 'u';
usys.OutputName = 'fs';

Examine random samples of usys to see the effect of the uncertain dynamics.

bode(usys,usys.Nominal)

Properties of uss Objects

uss models, like all model objects, include properties that store dynamics and model metadata. View
the properties of an uncertain state-space model.

p1 = ureal('p1',10,'Percentage',50);
p2 = ureal('p2',3,'PlusMinus',[-.5 1.2]);
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p3 = ureal('p3',0);
A = [-p1 p2; 0 -p1];
B = [-p2; p2+p3];
C = [1 0; 1 1-p3];
D = [0; 0];
sys = ss(A,B,C,D);     % create uss model

get(sys)

     NominalValue: [2x1 ss]
      Uncertainty: [1x1 struct]
                A: [2x2 umat]
                B: [2x1 umat]
                C: [2x2 umat]
                D: [2x1 double]
                E: []
        StateName: {2x1 cell}
        StateUnit: {2x1 cell}
    InternalDelay: [0x1 double]
       InputDelay: 0
      OutputDelay: [2x1 double]
               Ts: 0
         TimeUnit: 'seconds'
        InputName: {''}
        InputUnit: {''}
       InputGroup: [1x1 struct]
       OutputName: {2x1 cell}
       OutputUnit: {2x1 cell}
      OutputGroup: [1x1 struct]
            Notes: [0x1 string]
         UserData: []
             Name: ''
     SamplingGrid: [1x1 struct]

Most of the properties behave similarly to how they behave for ss model objects. The NominalValue
property is itself an ss model object. You can therefore analyze the nominal value as you would any
state-space model. For instance, compute the poles and step response of the nominal system.

pole(sys.NominalValue)

ans = 2×1

   -10
   -10

step(sys.NominalValue)
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As with the uncertain matrices (umat), the Uncertainty property is a structure containing the
uncertain elements. You can use this property for direct access to the uncertain elements. For
instance, check the Range of the uncertain element named p2 within sys.

sys.Uncertainty.p2.Range

ans = 1×2

    2.5000    4.2000

Change the uncertainty range of p2 within sys.

sys.Uncertainty.p2.Range = [2 4];

This command changes only the range of the parameter called p2 in sys. It does not change the
variable p2 in the MATLAB workspace.

p2.Range

ans = 1×2

    2.5000    4.2000

See Also
ureal | ucomplex | umargin | umat | ultidyn | usample
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Topics
“Uncertain State-Space Models”

Introduced before R2006a
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usubs
Substitute given values for uncertain elements of uncertain objects

Syntax
B = usubs(M,ElementName1,value1,ElementName2,value2,...)
B = usubs(M,S)
B = usubs(M,...,'-once')
B = usubs(M,...,'-batch')

Description
Use usubs to substitute a specific value for an uncertain element of an uncertain model object. The
value can itself be uncertain. It needs to be the correct size, but otherwise can be of any class, and
can be an array. Hence, the result can be of any class. In this manner, uncertain elements act as
symbolic placeholders, for which specific values (which can also contain other placeholders too) can
be substituted.

B = usubs(M,ElementName1,value1,ElementName2,value2,...) sets the elements in M,
identified by ElementName1, ElementName2, etc., to the values in value1, value2, etc.
respectively.

You can also use the character vectors 'NominalValue' or 'Random' as any value argument. If
you do so, the nominal value or a random instance of the uncertain element is used. You can partially
specify these character vectors, instead of typing the full expression. For example, you can use 'Nom'
or 'Rand'.

B = usubs(M,S) instantiates the uncertain elements of M to the values specified in the structure S.
The field names of S are the names of the uncertain elements to replace. The values are the
corresponding replacement values. To provide several replacement values, make S a struct array,
where each struct contains one set of replacement values. A structure such as S typically comes from
robustness analysis commands such as robstab, usample, or wcgain.

B = usubs(M,...,'-once') performs vectorized substitution in the uncertain model array M. Each
uncertain element is replaced by a single value, but this value may change across the model array. To
specify different substitute values for each model in the array M, use:

• A cell array for each valueN that causes the uncertain element ElementNameN in M(:,:,k) to
be replaced by valueN(k). For example, if M is a 2-by-3 array, then a 2-by-3 cell array value1
replaces ElementName1 of the model M(:,:,k) with the corresponding value1(k).

• A struct array S that specifies one set of substitute values S(k) for each model M(:,:,k).

Numeric array formats are also accepted for value1,value2,.... For example, value1 can be a 2-
by-3 array of LTI models, a numeric array of size [size(name1) 2 3], or a 2-by-3 matrix when the
uncertain element name1 is scalar-valued. The array sizes of M, S, value1,value2,... must agree
along non-singleton dimensions. Scalar expansion takes place along singleton dimensions.

Vectorized substitution ('-once') is the default for model arrays when no substitution method is
specified.
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B = usubs(M,...,'-batch') performs batch substitution in the uncertain model array M. Each
uncertain element is replaced by an array of values, and the same values are used for all models in M.
In batch substitution, B is a model array of size [size(M) VS], where VS is the size of the array of
substitute values.

Examples

Evaluate Uncertain Matrix for Multiple Values of Uncertain Parameters

Evaluate an uncertain matrix at several different values of the uncertain parameters of the matrix.

Create an uncertain matrix with two uncertain parameters.

a = ureal('a',5);
b = ureal('b',-3);
M = [a b];

Evaluate the matrix at four different combinations of values for the uncertain parameters a and b.

B = usubs(M,'a',[1;2;3;4],'b',[10;11;12;13]);

This command evaluates M for the four different (a, b) combinations (1,10), (2,11), and so on.
Therefore, B is a 1-by-2-by-4 array of numeric values containing the four evaluated values of M.

Evaluate Uncertain Matrix over Grid of Uncertain Parameters

Evaluate an uncertain matrix over a 3-by-4 grid of values of the uncertain parameters of the matrix.

Create a 2-by-2 uncertain matrix with two uncertain parameters.

a = ureal('a',5);
b = ureal('b',-3);
M = [a b;0 a*b];

Build arrays of values for the uncertain parameters.

aval = [1;2;3;4];
bval = [10;20;30];
[as,bs] = ndgrid(aval,bval);

This command builds two 4-by-3 grids of values.

Evaluate M over the parameter grids A and B.

B = usubs(M,'a',as,'b',bs);

This command evaluates M for each four different combination of values (A(k),B(k)). B is a 2-by-2-
by-4-by-3 array of numeric values, which is a 4-by-3 array of values of M, i.e., M evaluated over the
parameter grids.
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Instantiate Uncertain Parameter by Batch Substitution of Parameter for Array of Values

Evaluate an array of uncertain models, substituting an array of values for an uncertain parameter.

Create a 1-by-2 uncertain matrix with two uncertain parameters.

a = ureal('a',5);
b = ureal('b',-3);
M = [a b];

Replace a by each of the values 1, 2, 3, and 4.

Ma = usubs(M,'a',[1;2;3;4]);

This command returns a 4-by-1 array of 1-by-2 uncertain matrices that contain one uncertain
parameter b.

For each model in the array Ma, evaluate b at 10, 20, and 30.

B = usubs(Ma,'b',[10;20;30],'-batch');

The '-batch' flag causes usubs to evaluate each model in the array at all three values of b. Thus B
is a 4-by-3 array of M values.

The '-batch' syntax here yields the same result as the parameter grid approach used in the
previous example:

aval = [1;2;3;4];
bval = [10;20;30];
[as,bs] = ndgrid(aval,bval);
B = usubs(M,'a',as,'b',bs);

Instantiate Uncertain Parameter Using Different Value for Each Entry in Array

Evaluate an array of uncertain models, substituting a different value for the uncertain parameter in
each entry in the array.

Create a 1-by-2 uncertain matrix with two uncertain parameters.

a = ureal('a',5);
b = ureal('b',-3);
M = [a b];

Replace a by each of the values 1, 2, 3, and 4.

Ma = usubs(M,'a',[1;2;3;4]);

This command returns a 4-by-1 array of 1-by-2 uncertain matrices that contain one uncertain
parameter b.

For each model in the array Ma, evaluate b. Use b = 10 for the first entry in the array, b = 20 for
the second entry, and so on.

B = usubs(Ma,'b',{10;20;30;40},'-once');
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The '-once' flag causes usubs to evaluate the first model in the array using the first specified value
for b, the second model for the second specified value, etc.

Replace Uncertain Parameters with Values Returned by usample

Replace the uncertain parameters in an uncertain models by values specified in struct array form, as
returned by usample.

This is useful, for example, when you have multiple uncertain models that use the same set of
parameters, and you want to evaluate all models at the same parameter values.

Create two uncertain matrices that have the same uncertain parameters, a and b.

a = ureal('a',5);
b = ureal('b',-3);
M1 = [a b];
M2 = [a b;0 a*b];

Generate some random samples of M1.

[M1rand,samples] = usample(M1,5);

M1rand is an array of five values of M1, evaluated at randomly generated values of a and b. These a
and b values are returned in the struct array samples.

Examine the struct array samples.

samples

samples=5×1 struct array with fields:
    a
    b

The field names of samples correspond to the uncertain parameters of M1. The values are the
parameter values used to generate M1rand. Because M2 has the same parameters, you can use this
structure to evaluate M2 at the same set of values.

M2rand = usubs(M2,samples);

This command returns a 1-by-5 array of instantiations of M2.

See Also
gridureal | usample | simplify

Introduced before R2006a
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wcdiskmargin
Worst-case disk-based stability margins of uncertain feedback loops

Syntax
[wcDM,wcu] = wcdiskmargin(L,'siso')
[wcMM,wcu] = wcdiskmargin(L,'mimo')
[wcMMIO,wcu] = wcdiskmargin(P,C)
___  = wcdiskmargin( ___ ,sigma)
___  = wcdiskmargin( ___ ,opts)
[ ___ ,info] = wcdiskmargin( ___ )

Description
The worst-case disk margin is the smallest disk margin that occurs within a specified uncertainty
range. It is also the minimum guaranteed margin over the uncertainty range. wcdiskmargin
estimates the worst-case disk margins and corresponding worst-case gain and phase margins for both
loop-at-a-time and multiloop variations. The function also returns the worst-case perturbation, the
combination of uncertain elements that yields the weakest margins.

[wcDM,wcu] = wcdiskmargin(L,'siso') estimates the worst-case loop-at-a-time disk-based
stability margins for the uncertain negative feedback loop feedback(L,eye(N)), where N is the
number of inputs and outputs in L.

While diskmargin computes stability margins for a nominal model, wcdiskmargin computes the
worst-case (smallest) disk margin over the modeled uncertainty in L. Disk-based margin analysis
provides a stronger guarantee of robust stability than the classical gain and phase margins. For
general information about disk margins, see “Stability Analysis Using Disk Margins”.

[wcMM,wcu] = wcdiskmargin(L,'mimo') estimates the worst-case multiloop disk margins.

[wcMMIO,wcu] = wcdiskmargin(P,C) computes the worst-case stability margins when
considering independent, concurrent variations at both the plant inputs and plant outputs the
negative feedback loop of the following diagram.
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___  = wcdiskmargin( ___ ,sigma) specifies an additional skew parameter that biases the
modeled gain and phase variation toward gain increase (positive sigma) or gain decrease (negative
sigma). You can use this argument to test the relative sensitivity of stability margins to gain
increases versus decreases. You can use this argument with any of the previous syntaxes.

___  = wcdiskmargin( ___ ,opts) specifies additional options for the computation. Use
wcOptions to create opts. You can use opts with any of the previous syntaxes.

[ ___ ,info] = wcdiskmargin( ___ ) returns a structure with additional information about the
worst-case margins and the perturbations that generate them. You can use this output argument with
any of the previous syntaxes.

Examples

Worst-Case Disk Margins for Uncertain MIMO Feedback Loop

Use wcdiskmargin to compute worst-case loop-at-a-time and multiloop disk margins. This example
illustrates that loop-at-a-time margins can give an overly optimistic assessment of the true robustness
of MIMO feedback loops. Margins of individual loops can be sensitive to small perturbations within
other loops.

Consider the closed-loop system of the following illustration.

P is a two-input, two-output second-order plant and C is a 2x2 static gain. Construct P in state-space
form, assuming that it has an uncertain parameter and some dynamic uncertainty. Compute the
worst-case disk margins at the plant output (to compute the margins at the plant input, use L =
C*Pu).

p = ureal('p',10,'Percentage',10);
a = [-0.2 p;-p -0.2]; 
b = eye(2); 
c = [1 p;-p 1];
d = zeros(2,2);
P = ss(a,b,c,0);
DEL = ultidyn('DEL',[2 2],'Bound',0.1);
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Pu = P*(eye(2)+DEL);

C = [1 -2;0 1];
L = Pu*C;

[wcDM,wcu] = wcdiskmargin(L,'siso');

Examine the worst-case loop-at-a-time disk margins, returned in the structure array wcDM. Each entry
in this structure array contains the worst-case stability margins of the corresponding channel.

wcDM(1)  

ans = struct with fields:
           GainMargin: [0.5298 1.8875]
          PhaseMargin: [-34.1696 34.1696]
           DiskMargin: 0.6147
           LowerBound: 0.6147
           UpperBound: 0.6160
    CriticalFrequency: 0
    WorstPerturbation: [2x2 ss]

The result in wcDM(1) gives guaranteed stability margins for the specified uncertainty range. As long
as the open-loop gain of the first channel changes by a factor between 0.53 and 1.88, the closed loop
remains stable for all (p,DEL) values within the specified range. Similarly, the closed loop remains
stable as long as the phase variation does not exceed 34° in absolute value.

Similarly, wcDM(2) shows that in the second feedback channel, the gain can vary by any factor
between 0.52 and 1.93 or the phase can vary by up to 35°, and the system remains stable for such
variations and the (p,DEL) uncertainty.

wcDM(2)

ans = struct with fields:
           GainMargin: [0.5167 1.9352]
          PhaseMargin: [-35.3450 35.3450]
           DiskMargin: 0.6372
           LowerBound: 0.6372
           UpperBound: 0.6386
    CriticalFrequency: -2.2950e-08
    WorstPerturbation: [2x2 ss]

The lower bound returned by wcdiskmargin is a theoretical minimum guaranteed worst-case disk
margin. The upper bound corresponds to an actual perturbation in the specified uncertainty range
that approaches the lower-bound prediction. The output wcu contains the values of that perturbation
for each feedback channel. For example, wcu(2) is the worst combination of (alpha,DEL) for the
second channel, and the disk margins for this worst combination are close to wcDM(2). In particular,
DM(2).UpperBound and wcDM(1).UpperBound match.

wcL = usubs(L,wcu(2));
DM = diskmargin(wcL);
DM(2)

ans = struct with fields:
           GainMargin: [0.5159 1.9382]
          PhaseMargin: [-35.4184 35.4184]
           DiskMargin: 0.6386
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           LowerBound: 0.6386
           UpperBound: 0.6386
            Frequency: 2.2950e-08
    WorstPerturbation: [2x2 ss]

In practice, gain and phase variations affect both channels simultaneously. To estimate the stability
margins with respect to such independent and concurrent variations, examine the worst-case
multiloop disk margins.

wcMM = wcdiskmargin(L,'mimo')

wcMM = struct with fields:
           GainMargin: [0.8836 1.1317]
          PhaseMargin: [-7.0730 7.0730]
           DiskMargin: 0.1236
           LowerBound: 0.1236
           UpperBound: 0.1239
    CriticalFrequency: 0
    WorstPerturbation: [2x2 ss]

The multiloop margins are much weaker than when considering one loop at a time. This is because it
takes a smaller amount of gain (or phase) variation to destabilize the feedback loop when both
channels are subject to variations.

You can visualize how uncertainty affects the margins with wcdiskmarginplot. This plots the (disk-
based) gain and phase margins as a function of frequency for the nominal and worst-case values of
(alpha,DEL) as well as 20 random samples of this uncertainty. The plot shows that uncertainty
weakens the margins most near DC.

wcdiskmarginplot(L,{1e-1,1e1})
legend('location','NorthWest')
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Finally, compute the multiloop margin for simultaneous variations in gain (or phase) at both the plant
inputs and plant outputs. When you allow the gain (or phase) to vary in more places, it becomes
easier to destabilize the feedback loop, so the margins get even smaller. Thus, the multiloop I/O
margin provide the most comprehensive and most conservative assessment of robust stability in the
face of gain or phase variations and (alpha,DEL) uncertainty.

wcMMIO = wcdiskmargin(Pu,C)

wcMMIO = struct with fields:
           GainMargin: [0.9363 1.0680]
          PhaseMargin: [-3.7681 3.7681]
           DiskMargin: 0.0658
           LowerBound: 0.0658
           UpperBound: 0.0659
    CriticalFrequency: 1.0000e-04
    WorstPerturbation: [1x1 struct]

Input Arguments
L — Uncertain open-loop response
uncertain model | model array

Uncertain open-loop response, specified as an uncertain model such as a uss or ufrd model. L can
be SISO or MIMO, as long as it has the same number of inputs and outputs. wcdiskmargin
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computes the worst-case disk-based stability margins for the negative-feedback closed-loop system
feedback(L,eye(N)).

To compute the worst-case disk margins of the positive feedback system feedback(L,eye(N),+1),
use wcdiskmargin(-L).

When you have a controller P and a plant C, you can compute the worst-case disk margins for gain (or
phase) variations at the plant inputs or outputs, as in the following diagram.

• To compute margins at the plant outputs, set L = P*C.
• To compute margins at the plant inputs, set L = C*P.
• To consider variations at both the plant inputs and the plant output, use the syntax

[wcMMIO,wcu] = wcdiskmargin(P,C) instead.

L can be continuous time or discrete time. If L is a generalized state-space model (genss) then
wcdiskmargin uses the current value of the tunable control design blocks in L.

If L is a frequency-response data model (such as ufrd), then wcdiskmargin computes the margins
at each frequency represented in the model. The function returns the worst-case margins at the
frequency with the smallest disk margin.

If L is a model array, then wcdiskmargin computes margins for each model in the array.

P — Plant
uncertain model

Plant, specified as an uncertain model such as a uss or ufrd model. P can be SISO or MIMO, as long
as P*C has the same number of inputs and outputs. wcdiskmargin computes the worst-case disk
margins for a negative-feedback closed-loop system. To compute the disk margins of the system with
positive feedback, use wcdiskmargin(P,-C).

P can be continuous time or discrete time. If P is a generalized state-space model (genss) then
wcdiskmargin uses the current value of the tunable control design blocks in P.
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If P is a frequency-response data model (such as frd), then wcdiskmargin computes the margins at
each frequency represented in the model. The function returns the worst-case margins at the
frequency with the smallest disk margin.

C — Controller
dynamic system model

Controller, specified as a dynamic system model. C can be SISO or MIMO, as long as P*C has the
same number of inputs and outputs. wcdiskmargin computes the disk-based stability margins for a
negative-feedback closed-loop system. To compute the disk margins of the system with positive
feedback, use wcdiskmargin(-C,P).

C can be continuous time or discrete time. If C is a generalized state-space model (genss) then
wcdiskmargin uses the current value of the tunable control design blocks in C.

If C is a frequency-response data model (such as frd), then wcdiskmargin computes the margins at
each frequency represented in the model. The function returns the worst-case margins at the
frequency with the smallest disk margin.

sigma — Skew
0 (default) | real scalar

Skew of uncertainty region used to compute the stability margins, specified as a real scalar value.
This parameter biases the uncertainty used to model gain and phase variations toward gain increase
or gain decrease.

• The default sigma = 0 uses a balanced model of gain variation in a range [gmin,gmax], with
gmin = 1/gmax.

• Positive sigma uses a model with more gain increase than decrease (gmin > 1/gmax).
• Negative sigma uses a model with more gain decrease than increase (gmin < 1/gmax).

Use the default sigma = 0 to get unbiased estimates of gain and phase margins. You can test relative
sensitivity to gain increase and decrease by comparing the margins obtained with both positive and
negative sigma values. For more detailed information about how the choice of sigma affects the
margin computation, see “Stability Analysis Using Disk Margins”.

opts — Options for margin computation
wcOptions object

Options for worst-case computation, specified as an object you create with wcOptions. The available
options include settings that let you:

• Extract frequency-dependent worst-case margins.
• Examine the sensitivity of the worst-case margins to each uncertain element.
• Improve the results of the worst-case margin calculation by setting certain options for the

underlying mussv calculation.

For more information about all available options, see wcOptions.
Example: wcOptions('Sensitivity','on','MussvOptions','m3')
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Output Arguments
wcDM — Worst-cast disk margins for each feedback channel
structure | structure array

Worst-case disk margins for each feedback channel with all other loops closed, returned as a
structure for SISO feedback loops, or an N-by-1 structure array for a MIMO loop with N feedback
channels. The fields of wcDM(i) are:

Field Value
GainMargin Minimum guaranteed disk-based gain margin of the corresponding

feedback channel, returned as a vector of the form [gmin,gmax]. These
values mean that as long as the open-loop gain of the ith channel changes
by a factor no less than gmin and no more than gmax, the closed loop
remains stable for all uncertainty values within the ranges specified in L. If
the open-loop gain can change sign without loss of stability, gmin can be
less than zero for large enough negative sigma. If the closed-loop system
goes unstable for some combination of uncertainty values, then
wcDM(i).GainMargin = [1 1].

PhaseMargin Minimum guaranteed disk-based phase margin of the corresponding
feedback channel, returned as a vector of the form [-pm,pm] in degrees.
If the closed-loop system goes unstable for some combination of
uncertainty values, then wcDM(i).PhaseMargin = [0 0].

DiskMargin Minimum guaranteed disk margin (see “Stability Analysis Using Disk
Margins” for the definition and interpretation of the disk margin). If the
closed-loop system is unstable for some combination of uncertain-element
values, then wcDM(i).DiskMargin = 0.

LowerBound Lower bound on worst-case disk margin. This value is the same as
DiskMargin.

UpperBound Upper bound on worst-case disk margin. This value is the disk margin
obtained for the worst perturbation found by wcdiskmargin, returned as
wcu(i). The actual worst-case disk margin is no better than this value.

CriticalFrequency Frequency at which the disk margin for the worst perturbation wcu(i) is
weakest, as a function of frequency. This value is in rad/TimeUnit, where
TimeUnit is the TimeUnit property of L.
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Field Value
WorstPerturbation Smallest gain and phase variation that drives the feedback loop unstable

for the worst-case combination of uncertain elements. The perturbation is
returned as a state-space (ss) model with N inputs and outputs, where N is
the number of inputs and outputs in L. The system F(s) =
WorstPerturbation is such that for the worst-case combination of
uncertain elements of L (the values returned in wcu) the following
feedback loop has a pole on the stability boundary at
wcDM(i).CriticalFrequency.

This state-space model is a diagonal perturbation of the form F(s) =
diag(f1(s),...,fN(s)). Each fj(s) is a real-parameter dynamic
system that realizes the worst-case complex gain and phase variation
applied to each channel of the feedback loop. For the loop-at-a-time margin
of the kth feedback loop, only the kth entry fk(s) of
wcDM(k).WorstPerturbation differs from unity.

For more information on interpreting wcDM(K).WorstPerturbation, see
“Disk Margin and Smallest Destabilizing Perturbation”

This field is different from the WorstPerturbation field of the info
output argument. That field contains the values of the uncertain elements
of L that yield the smallest margins at each frequency.

When L = P*C is the open-loop response of a system comprising a controller and plant with unit
negative feedback in each channel, wcDM contains the stability margins for variations at the plant
outputs. To compute the stability margins for variations at the plant inputs, use L = C*P. To compute
the stability margins for simultaneous, independent variations at both the plant inputs and outputs,
use wcMMIO = wcdiskmargin(P,C).

When L is a model array, wcDM has additional dimensions corresponding to the array dimensions of L.
For instance, if L is a 1-by-3 array of two-input, two-output models, then wcDM is a 2-by-3 structure
array. wcDM(j,k) contains the margins for the jth feedback channel of the kth model in the array.

wcu — Perturbation yielding the weakest margins
structure array | structure

Perturbation of uncertain elements yielding the weakest margins, returned as:

• A structure array of dimensions N-by-1 for loop-at-a-time margins, where N is the number of
feedback channels

• A scalar structure for multiloop margins

The lower bound returned by wcdiskmargin is a theoretical minimum guaranteed worst-case disk
margin. The upper bound corresponds to an actual perturbation in the specified uncertainty range
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that approaches the lower-bound prediction. wcu contains the values of that perturbation. For
example, if the input system includes uncertain elements M and delta, then wcu.M and wcu.delta
contain the worst perturbations found by wcdiskmargin. It is possible that a worse perturbation
exists, but no perturbation can yield a worse margin than the lower bound returned by
wcdiskmargin.

Use usubs to substitute these values for the uncertain elements in the input system, to obtain the
dynamic system that has the worst-case disk margin.

wcMM — Worst-case multiloop disk margins
structure

Worst-case multiloop disk margins, returned as a structure. The gain (or phase) margins quantify how
much gain variation (or phase variation) the system can tolerate in all feedback channels at once
while remaining stable. Thus, wcMM is a single structure regardless of the number of feedback
channels in the system. (For SISO systems, wcMM = wcDM.) The fields of wcMM are:

Field Value
GainMargin Minimum guaranteed multiloop disk-based gain margin, returned as a

vector of the form [gmin,gmax]. These values mean that as long as the
gain in all loop channels changes by a factor no less than gmin and no
more than gmax, the closed loop remains stable for all uncertainty values
within the ranges specified in L. If the closed-loop system goes unstable for
some combination of uncertainty values, then wcMM.GainMargin = [1
1].

PhaseMargin Minimum guaranteed multiloop disk-based phase margin, returned as a
vector of the form [-pm,pm] in degrees. If the closed-loop system goes
unstable for some combination of uncertainty values, then
wcMM.PhaseMargin = [0 0].

DiskMargin Minimum guaranteed disk margin (see “Stability Analysis Using Disk
Margins” for the definition and interpretation of the disk margin). If the
closed-loop system is unstable for some combination of uncertain-element
values, then wcMM.DiskMargin = 0.

LowerBound Lower bound on worst-case disk margin. This value is the same as
DiskMargin.

UpperBound Upper bound on worst-case disk margin. This value is the disk margin
obtained for the worst perturbation found by wcdiskmargin, returned as
wcu. The actual worst-case multiloop disk margin is no better than this
value.

CriticalFrequency Frequency at which the disk margin for the worst perturbation wcu is
weakest, as a function of frequency. This value is in rad/TimeUnit, where
TimeUnit is the TimeUnit property of L.
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Field Value
WorstPerturbation Smallest gain and phase variation that drives the feedback loop unstable

for the worst-case combination of uncertain elements. The perturbation is
returned as a state-space (ss) model with N inputs and outputs, where N is
the number of inputs and outputs in L. The system F(s) =
WorstPerturbation is such that for the worst-case combination of
uncertain elements of L (the values returned in wcu) the following
feedback loop has a pole on the stability boundary at
wcMM.CriticalFrequency.

This state-space model is a diagonal perturbation of the form F(s) =
diag(f1(s),...,fN(s)). Each fj(s) is a real-parameter dynamic
system that realizes the worst-case complex gain and phase variation
applied to each channel of the feedback loop.

For more information on interpreting wcDM(K).WorstPerturbation, see
“Disk Margin and Smallest Destabilizing Perturbation”

This field is different from the WorstPerturbation field of the info
output argument. That field contains the values of the uncertain elements
of L that yield the smallest margins at each frequency.

When L = P*C is the open-loop response of a system comprising a controller and plant with unit
negative feedback in each channel, wcMM contains the stability margins for variations at the plant
outputs. To compute the stability margins for variations at the plant inputs, use L = C*P. To compute
the stability margins for simultaneous, independent variations at both the plant inputs and outputs,
use wcMMIO = wcdiskmargin(P,C).

When L is a model array, wcMM is a structure array with one entry for each model in L.

wcMMIO — Worst-case disk margins for independent variations in all input and output
channels
structure

Worst-case disk margins for independent variations in all input and output channels of the plant P,
returned as a structure having the same fields as wcMM.

For variations applied simultaneously at inputs and outputs, the WorstPerturbation field is itself a
structure with fields Input and Output. Each of these fields contains a state-space model such that
for Fi(s) = wcMMIO.WorstPerturbation.Input and Fo(s) =
wcMMIO.WorstPerturbation.Output, the system of the following diagram is marginally unstable,
with a pole on the stability boundary at the frequency wcMMIO.CriticalFrequency, when P is
evaluated with the worst-case uncertainty values wcu.
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These state-space models Input and Output are diagonal perturbations of the form F(s) =
diag(f1(s),...,fN(s)). Each fj(s) is a real-parameter dynamic system that realizes the worst-
case complex gain and phase variation applied to each channel of the feedback loop.

info — Additional information about worst-case values
structure

Additional information about the worst-case values, returned as a structure with the following fields:

Field Description
Model Index of the model that has the smallest disk margin, when

L is an array of models.
Frequency Frequency points at which wcdiskmargin returns the

minimum guaranteed margins, returned as a vector.

• If the 'VaryFrequency' option of wcOptions is
'off', then info.Frequency is the critical frequency,
the frequency at which the worst-case disk margin
occurs. If the largest lower bound and the smallest
upper bound on the worst-case disk margin occur at
different frequencies, then info.Frequency is a vector
containing these two frequencies.

• If the 'VaryFrequency' option of wcOptions is 'on',
then info.Frequency contains the frequencies
selected by wcdiskmargin. These frequencies are
guaranteed to include the frequency at which the worst-
case disk margin occurs.

The 'VaryFrequency' option is meaningful only for uss
and genss models. wcdiskmargin ignores the option for
ufrd and genfrd models.

Bounds Lower and upper bounds on the actual worst-case disk
margin of the model, returned as an array.
info.Bounds(:,1) contains the lower bound at each
corresponding frequency in info.Frequency, and
info.Bounds(:,2) contains the corresponding upper
bounds.
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Field Description
WorstPerturbation Worst perturbations at each frequency point in

info.Frequency, returned as a structure array. Here,
worst refers to the perturbations that cause the smallest
disk margin at a particular frequency. The fields of
info.WorstPerturbation are the names of the
uncertain elements in the input model. Each field contains
the worst value of the corresponding element at each
frequency. For example, if L includes an uncertain
parameter p and SISO uncertain dynamics delta, then
info.WorstPerturbation.p is a collection of numeric
values and info.WorstPerturbation.delta is a
collection of SISO state-space models.

info.WorstPerturbation contains the minimum-margin
values of the uncertain elements in the input system L or P.
It is distinct from the WorstPerturbation field of the
output structures wcDM, wcMM, and wcMMIO. Those field
contain state-space models representing the smallest gain
and phase variations that drive the feedback loop unstable.

Sensitivity Sensitivity of the worst-case disk margin to each uncertain
element, returned as a structure when the 'Sensitivity'
option of wcOptions is 'on'. The fields of
info.Sensitivity are the names of the uncertain
elements in the input model. Each field contains a
percentage that measures how much the uncertainty in the
corresponding element affects the worst disk margin. For
example, if info.Sensitivity.p is 50, then a given
fractional change in the uncertainty range of p causes half
as much fractional change in the worst disk margin.

If the 'Sensitivity' option of wcOptions is off (the
default setting), then info.Sensitivity is NaN.

Tips
• wcdiskmargin assumes negative feedback. To compute the worst-case disk margins of a positive

feedback system, use wcdiskmargin(-L) or wcdiskmargin(P,-C).
• You can visualize worst-case disk margins with wcdiskmarginplot.

Algorithms
wcdiskmargin models gain (and phase) variation as umargin uncertainty, combines it with the
specified plant uncertainty, and uses mussv to compute the worst-case disk margins and
perturbation. This generalizes the diskmargin algorithm to feedback loops with uncertainty. For
more information about disk-margin computation and interpretation, see “Stability Analysis Using
Disk Margins”.
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Compatibility Considerations
Worst-case disk-based gain margin range can include negative gains
Behavior changed in R2020a

The wcdiskmargin command returns disk-based gain margins in the GainMargin field of its output
structures wcDM, wcMM, and wcMMIO. These margins take the form [gmin,gmax], meaning that the
open-loop gain can be multiplied by any factor in that range without loss of closed-loop stability.
Beginning in R2020a, the lower end of the range gmin can be negative for some negative values of
the skew sigma, if the closed-loop system remains stable even if the sign of the open-loop gain
changes. The skew controls the bias in the disk-based gain margin toward gain decrease or increase
(see “Stability Analysis Using Disk Margins”). Previously, the gain-margin range was always positive.

See Also
diskmargin | wcOptions | wcgain | wcdiskmarginplot

Topics
“Stability Analysis Using Disk Margins”
“Disk Margin and Smallest Destabilizing Perturbation”

Introduced in R2018b
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wcgain
Worst-case gain of uncertain system

Syntax
[wcg,wcu] = wcgain(usys)
[wcg,wcu] = wcgain(usys,w)
[wcg,wcu] = wcgain( ___ ,opts)
[wcg,wcu,info] = wcgain( ___ )

Description
[wcg,wcu] = wcgain(usys) calculates the worst-case peak gain of the uncertain system usys.
Peak gain refers to the maximum gain over frequency (H∞ norm). For multi-input, multi-output
(MIMO) systems, gain refers to the largest singular value of the frequency response matrix. (See
sigma for more information about singular values.) The structure wcg contains upper and lower
bounds on the worst-case gain and the critical frequency at which the lower bound peaks. (See
“Worst-Case Gain” on page 1-626.) The structure wcu contains the values of the uncertain elements
of usys that cause the worst-case peak gain.

[wcg,wcu] = wcgain(usys,w) restricts worst-case computation to the frequencies specified by w.

• If w is a cell array of the form {wmin,wmax}, then wcgain returns the worst-case gain in the
interval between wmin and wmax.

• If w is a vector of frequencies, then wcgain calculates the worst-case gain at the specified
frequencies only, and returns the worst of those gains.

[wcg,wcu] = wcgain( ___ ,opts) specifies additional options for the computation. Use
wcOptions to create opts. You can use this syntax with any of the previous input-argument
combinations.

[wcg,wcu,info] = wcgain( ___ ) returns a structure with additional information about the
worst-case gains and the perturbations that generate them. See info for details about this structure.
You can use this syntax with any of the previous input-argument combinations.

Examples

Worst-Case Peak Gain of Closed-Loop System

Consider a control system whose plant is nominally an integrator with some additive dynamic
uncertainty. Create a model of the plant.

delta = ultidyn('delta',[1 1],'bound',0.4); 
G = tf(1,[1 0]) + delta;

Create a PD controller for the model. Suppose you want to examine the worst-case disturbance
rejection performance. Build the closed-loop sensitivity function to examine the worst-case gain of a
disturbance at the plant input.
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C = pid(2,0,-0.04,0.02);
S = feedback(1,G*C);

Because of the uncertainty, the frequency response of this transfer function falls within some
envelope. The frequency-response magnitude of a few samples of the system gives a sense of that
envelope.

bodemag(S)

Each sample has a different peak gain. Find the highest peak-gain value within the envelope and the
corresponding values for the uncertain elements.

[wcg,wcu] = wcgain(S);
wcg

wcg = struct with fields:
           LowerBound: 5.1036
           UpperBound: 5.1140
    CriticalFrequency: 10.7241

The LowerBound and UpperBound fields of wcg show that the worst-case peak gain is around 5.1.
This gain occurs at the critical frequency around 10.6 rad/s.

The output wcu is a structure that contains the perturbation to delta that causes the worst-case
gain. Confirm the result by substituting this value into the sensitivity function.
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Swc = usubs(S,wcu);
getPeakGain(Swc)

ans = 5.1037

Because the system has dynamic uncertainty delta with gain not exceeding 0.4, the worst-case value
of delta should be a system with peak gain of 0.4. Confirm this result.

getPeakGain(wcu.delta)

ans = 0.4000

Worst-Case Gain at Frequencies in a Range

Consider a model of a control system containing uncertain elements.

k = ureal('k',10,'Percent',40);
delta = ultidyn('delta',[1 1]); 
G = tf(18,[1 1.8 k]) * (1 + 0.5*delta);
C = pid(2.3,3,0.38,0.001);
CL = feedback(G*C,1);

By default, wcgain returns only the worst-case peak gain over all frequencies. To obtain worst-case
gain values at multiple frequencies, use the 'VaryFrequency' option of wcOptions. For example,
compute the highest possible gain of the system at frequency points between 0.1 and 10 rad/s.

opts = wcOptions('VaryFrequency','on');
[wcg1,wcu1,info1] = wcgain(CL,{0.1,10},opts);
info1

info1 = struct with fields:
                 Model: 1
             Frequency: [19x1 double]
                Bounds: [19x2 double]
     WorstPerturbation: [19x1 struct]
           Sensitivity: [1x1 struct]
    BadUncertainValues: [19x1 struct]
            ArrayIndex: 1

wcgain returns the vector of frequencies in the info output, in the Frequencies field.
info.Bounds contains the upper and lower bounds on the worst-case gain at each frequency. Use
these values to plot the frequency dependence of the worst-case gain.

semilogx(info1.Frequency,info1.Bounds)
title('Worst-Case Gain vs. Frequency')
ylabel('Gain')
xlabel('Frequency')
legend('Lower bound','Upper bound','Location','northwest')
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The curve shows the high-gain envelope for all systems within the uncertainty ranges of CL. You can
also use wcsigmaplot to plot this envelope along with samples of the system.

When you use the 'VaryFrequency' option, wcgain chooses frequency points automatically. The
frequencies it selects are guaranteed to include the frequency at which the worst-case gain is highest
(within the specified range). Display the returned frequency values to confirm that they include the
critical frequency.

info1.Frequency

ans = 19×1

    0.1000
    0.1061
    0.1425
    0.1914
    0.2572
    0.3455
    0.4642
    0.6236
    0.8377
    1.1253
      ⋮

wcg1.CriticalFrequency

ans = 6.0749
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Alternatively, instead of using 'VaryFrequency', you can specify particular frequencies at which to
compute the worst-case gains. info.Bounds contains the worst-case gains at all specified
frequencies.

w = logspace(-1,1,24); 
[wcg2,wcu2,info2] = wcgain(CL,w);
semilogx(w,info2.Bounds)
title('Worst-Case Gain vs. Frequency')
ylabel('Gain')
xlabel('Frequency')
legend('Lower bound','Upper bound','Location','northwest')

When you provide the frequency grid in this way, the results are not guaranteed to include the overall
worst-case gain, which might fall between specified frequency points. To see this, examine wcg1 and
wcg2, which contain the bounds for the two approaches.

wcg1

wcg1 = struct with fields:
           LowerBound: 2.0848
           UpperBound: 2.0897
    CriticalFrequency: 6.0749

wcg2

wcg2 = struct with fields:
           LowerBound: 2.0349
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           UpperBound: 2.0370
    CriticalFrequency: 6.7002

wcg1, computed using VaryFrequency, finds a higher peak gain than the specified frequency grid.

Determine Effect of Uncertainty Range on Worst-Case Response

Consider a feedback loop with a first-order plant and a PI controller. The time constant of the plant is
uncertain, and the feedback loop accounts for unmodeled dynamic uncertainty. Compute the worst-
case gain of the sensitivity function Si at the plant inputs. Use the 'Sensitivity' option of
wcOptions to compute how sensitive this worst-case gain is to each uncertain element.

% Create uncertain system and controller
delta = ultidyn('delta',[1 1]);
tau = ureal('tau',5,'range',[4 6]);
P = tf(1,[tau 1])*(1+0.25*delta);
C = pid(4,4);

opt = wcOptions('Sensitivity','on');
Si = inv(1 + C*P);
[wcg,~,info] = wcgain(Si,opt);

The Sensitivity field of the info output structure includes data that reflects how much the
maximum gain of the input sensitivity function changes with each uncertain element.

info.Sensitivity

ans = struct with fields:
    delta: 44
      tau: 9

This result tells you that if the uncertainty range of delta increases by 10%, the peak input sensitivity
increases by about 4.4%. Similarly, a 10% increase in the uncertainty range of tau causes about a
0.9% increase in the peak input sensitivity.

Improve Worst-Case Perturbation

Specifying certain options for the structured-singular-value computation that underlies the worst-gain
computation can yield better results in some cases. For example, consider a sample plant and
controller.

load('wcgExampleData.mat')

This command loads gPlant, a MIMO plant with 10 outputs, 8 inputs, and 11 uncertain elements. It
also loads Kmu, a state-space controller model. Form a closed-loop system with these models, and
examine the worst-case gain.

CL = lft(gPlant,Kmu);
[wcg,wcu] = wcgain(CL);
wcg
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wcg = struct with fields:
           LowerBound: 10.8742
           UpperBound: 11.2135
    CriticalFrequency: 6.6794

There is a large difference between the lower and upper bounds on the worst-case gain. To get a
better estimate of the actual worst-case gain, increase the number of restarts that wcgain uses for
computing of the worst-case perturbation and associated lower bound. Doing so can result in a
tighter lower bound. This option does not affect the upper-bound calculation.

opt = wcOptions('MussvOptions','m3');
[wcg,wcu] = wcgain(CL,opt);
wcg

wcg = struct with fields:
           LowerBound: 10.8742
           UpperBound: 11.2135
    CriticalFrequency: 6.6794

The difference between the lower bound and upper bound on the worst-case gain is much smaller.
The critical frequency is different as well.

Input Arguments
usys — Dynamic system with uncertainty
uss | ufrd | genss | genfrd

Dynamic system with uncertainty, specified as a uss, ufrd, genss, or genfrd model that contains
uncertain elements. For genss or genfrd models, wcgain uses the current value of any tunable
blocks and folds them into the known (not uncertain) part of the model.

usys can also be an array of uncertain models. In that case, wcgain returns the worst-case gain
across all models in the array, and the info output contains the index of the corresponding model.

w — Frequencies
{wmin,wmax} | vector

Frequencies at which to compute worst-case gains, specified as the cell array {wmin,wmax} or as a
vector of frequency values.

• If w is a cell array of the form {wmin,wmax}, then the function returns the worst-case gain in the
interval between wmin and wmax.

• If w is a vector of frequencies, then the function computes the worst-case gain at each specified
frequency.

Specify frequencies in units of rad/TimeUnit, where TimeUnit is the TimeUnit property of the
model.

opts — Options for margin computation
wcOptions object

Options for worst-case computation, specified as an object you create with wcOptions. The available
options include settings that let you:
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• Extract frequency-dependent worst-case gains (see “Worst-Case Gain” on page 1-626).
• Examine the sensitivity of the worst-case gain to each uncertain element.
• Improve the results of the worst-case gain calculation by setting certain options for the underlying

mussv calculation. For an example, see “Improve Worst-Case Perturbation” on page 1-622.

For more information about all available options, see wcOptions.
Example: wcOptions('Sensitivity','on','MussvOptions','m3')

Output Arguments
wcg — Worst-case peak gain and critical frequency
structure

Worst-case peak gain and critical frequency, returned as a structure containing the following fields:

Field Description
LowerBound Lower bound on the actual worst-case peak gain of the

model, returned as a scalar value. This value is the peak
gain corresponding to the worst-case perturbation wcu.
The exact worst-case peak gain is guaranteed to be no
smaller than LowerBound.

UpperBound Upper bound on the actual worst-case peak gain of the
model, returned as a scalar value. The exact worst-case
peak gain is guaranteed to be no larger than UpperBound.
When you specify a frequency grid as a vector w, the
guarantee only applies at the specified frequencies.

CriticalFrequency Frequency at which the worst-case peak gain occurs, in
rad/TimeUnit, where TimeUnit is the TimeUnit
property of usys.

wcu — Worst-case perturbation
structure

Worst case perturbation of uncertain elements, returned as a structure whose fields are the names of
the uncertain elements of usys. Each field contains the actual value of the corresponding uncertain
element of usys when the worst-case peak gain occurs. For example, if usys includes an uncertain
matrix M and SISO uncertain dynamics delta, then wcu.M is a numeric matrix and wcu.delta is a
SISO state-space model.

Use usubs(usys,wcu) to substitute these values for the uncertain elements in usys, to obtain the
dynamic system that has the worst-case peak gain.

info — Additional information about worst-case values
structure

Additional information about the worst-case values, returned as a structure with the following fields:

Field Description
Model Index of the model that has the largest worst-case peak

gain, when usys is an array of models.
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Field Description
Frequency Frequency points at which wcgain returns the worst-case

gain, returned as a vector.

• If the 'VaryFrequency' option of wcOptions is
'off', then info.Frequency is the critical frequency,
the frequency at which the worst-case peak gain occurs.
If the largest lower bound and the smallest upper bound
on the worst-case gain occur at different frequencies,
then info.Frequency is a vector containing these two
frequencies.

• If the 'VaryFrequency' option of wcOptions is 'on',
then info.Frequency contains the frequencies
selected by wcgain. These frequencies are guaranteed
to include the frequency at which the worst-case peak
gain occurs.

• If you specify a vector of frequencies w at which to
compute the worst-case gains, then info.Frequency
= w. When you specify a frequency vector, these
frequencies are not guaranteed to include the frequency
at which the worst-case peak gain occurs.

The 'VaryFrequency' option is meaningful only for uss
and genss models. wcgain ignores the option for ufrd and
genfrd models.

Bounds Lower and upper bounds on the actual worst-case gain of
the model, returned as an array. info.Bounds(:,1)
contains the lower bound at each corresponding frequency
in info.Frequency, and info.Bounds(:,2) contains
the corresponding upper bounds.

WorstPerturbation Perturbations that cause the worst-case gain at each
frequency point in info.Frequency, returned as a
structure array. The fields of info.WorstPerturbation
are the names of the uncertain elements in usys, and each
field contains the worst-case value of the corresponding
element at each frequency. For example, if usys includes an
uncertain parameter p and SISO uncertain dynamics
delta, then info.WorstPerturbation.p is a collection
of numeric values and info.WorstPerturbation.delta
is a collection of SISO state-space models.
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Field Description
Sensitivity Sensitivity of the worst-case gain to each uncertain

element, returned as a structure when the 'Sensitivity'
option of wcOptions is 'on'. The fields of
info.Sensitivity are the names of the uncertain
elements in usys. Each field contains a percentage that
measures how much the uncertainty in the corresponding
element affects the worst-case gain. For example, if
info.Sensitivity.p is 50, then a given fractional
change in the uncertainty range of p causes half as much
fractional change in the worst-case gain.

If the 'Sensitivity' option of wcOptions is off (the
default setting), then info.Sensitivity is NaN.

BadUncertainValues Same as WorstPerturbation. Included for compatibility
with R2016a and earlier.

ArrayIndex Same as Model. Included for compatibility with R2016a and
earlier.

More About
Worst-Case Gain

By default, wcgain returns the peak gain (or peak singular value, for MIMO systems) achievable
within the uncertainty range, over all frequencies (or the frequencies specified by w). You can obtain
the peak gain as a function of frequency using the VaryFrequency option of wcOptions.

To understand the difference, consider the following illustration, representing the magnitude of the
frequency response of an uncertain system.
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The dark blue curve is the nominal response of the system. The light blue curves show various
sampled responses of the system. The wcg output of wcgain contains the bounds on the worst-case
gain over all frequencies, about 5 dB in the illustration. The frequency at which this gain occurs is the
critical frequency, also returned in wcg.

If you set the VaryFrequency option of wcOptions to 'on', then wcgain also calculates the
maximum gain at each frequency point, shown by the red curve. wcgain returns these values in
info.Bounds. See “Worst-Case Gain at Frequencies in a Range” on page 1-619 for an example. You
can also use wcsigmaplot to visualize the worst-case gain as a function of frequency.

Algorithms
Computing the worst-case gain at a particular frequency is equivalent to computing the structured
singular value, μ, for some appropriate block structure (μ-analysis).

For uss and genss models, wcgain(usys) and wcgain(usys,{wmin,wmax}) use an algorithm
that finds the worst-case gain across frequency. This algorithm does not rely on frequency gridding
and is not adversely affected by sharp peaks of the μ structured singular value. See “Getting Reliable
Estimates of Robustness Margins” for more information.

For ufrd and genfrd models, wcgain computes the μ lower and upper bounds at each frequency
point. This computation offers no guarantee between frequency points and can be inaccurate if the
uncertainty gives rise to sharp resonances. The syntax wcgain(uss,w), where w is a vector of
frequency points, is the same as wcgain(ufrd(uss,w)) and also relies on frequency gridding to
compute the worst-case gain.
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In general, the algorithm for state-space models is faster and safer than the frequency-gridding
approach. In some cases, however, the state-space algorithm requires many μ calculations. In those
cases, specifying a frequency grid as a vector w can be faster, provided that the worst-case gain
varies smoothly with frequency. Such smooth variation is typical for systems with dynamic
uncertainty.

See Also
mussv | wcsigmaplot | wcOptions | robstab | wcdiskmargin

Topics
“Robust Stability and Worst-Case Gain of Uncertain System”
“Robustness and Worst-Case Analysis”

Introduced before R2006a
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wcgainOptions
(Not recommended) Option set for wcsens

Note wcgainOptions is not recommended. Use wcOptions instead. For more information, see
“Compatibility Considerations”.

Syntax
opt = wcgainOptions
opt = wcgainOptions(Name,Value,...)

Description
opt = wcgainOptions returns the default option set for a wcsens calculation. Use dot notation to
set the values of the options listed in “Input Arguments” on page 1-629.

opt = wcgainOptions(Name,Value,...) creates an option set with the options specified by one
or more Name,Value pair arguments.

Note To create options sets for wcgain, wcdiskmargin, or wcsigmaplot, use wcOptions.

Input Arguments
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Sensitivity

Determines whether to compute the sensitivity of worst-case responses with respect to each
individual uncertain element. This quantity determines how sensitive each system response (such as
sensitivity or complementary sensitivity) is to variations in the uncertain parameters.

Sensitivity takes the following values:

• 'on' — wcsens computes the sensitivity of the worst-case responses with respect to each
individual uncertain element. This provides an indication of which elements are most problematic.

• 'off' — wcsens does not compute the sensitivity of the worst-case responses with respect to
each individual uncertain element.

Default: 'on'

VaryUncertainty

Percentage variation of uncertainty for calculations of sensitivity to uncertainty. The sensitivity
estimate uses a finite difference calculation.
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Default: 25

LowerBoundOnly

Determines whether only the lower bound is computed.

LowerBoundOnly takes the following values:

• 'on' — wcsens only computes a lower bound on the worst-case response
• 'off' — wcgain computes lower and upper bounds on the worst-case response

Default: 'off'

MaxOverFrequency

MaxOverFrequency takes the following values:

• 'on' — wcsens computes the worst-case response function
• 'off' — wcsens computes the worst possible response at each frequency point

Default: 'on'

MaxOverArray

For uncertain model arrays, determines if worst-case response is calculated over entire array or
individually for all models in array.

MaxOverArray takes the following values:

• 'on' — wcsens computes the worst-case response over all models
• 'off' — wcsens computes the worst-case response for each model individually

Default: 'on'

AbsTol

Absolute tolerance on computed bound.

The algorithm terminates if UpperBound-LowerBound <= max(AbsTol, Reltol*UpperBound).

Relaxing tolerance speeds up the computation.

Default: 0.02

RelTol

Relative tolerance on computed bound.

The algorithm terminates if UpperBound-LowerBound <= max(AbsTol, Reltol*UpperBound).

Default: 0.05

AbsMax

Absolute threshold for lower bound.
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The algorithm terminates if LowerBound >= AbsMax + RelMax * NominalGain.

Specify AbsMax and RelMax to terminate when the lower bound is large enough compared to the
nominal gain.

Default: 5

RelMax

Relative threshold for lower bound.

The algorithm terminates if LowerBound >= AbsMax + RelMax * NominalGain.

Specify AbsMax and RelMax to terminate when the lower bound is large enough compared to the
nominal gain.

Default: 20

NSearch

Number of lower bound searches at each frequency

Default: 2

Output Arguments
opt

Option set containing the specified options for wcsens.

Examples

Determine Effect of Uncertainty Range on Worst-Case Response

Consider a feedback loop with a first-order plant and a PI controller. The time constant of the plant is
uncertain, and the feedback loop accounts for unmodeled dynamic uncertainty. Compute the worst-
case gain of the sensitivity function Si at the plant inputs. Use the 'Sensitivity' option of
wcgainOptions to compute how sensitive this worst-case gain is to each uncertain element.

% Create uncertain system and controller
delta = ultidyn('delta',[1 1]);
tau = ureal('tau',5,'range',[4 6]);
P = tf(1,[tau 1])*(1+0.25*delta);
C = pid(4,4);

opt = wcgainOptions('Sensitivity','on');
wcst = wcsens(P,C,'Si',opt);    

The Sensitivity field of the Si entry in the output structure includes data that reflects how much
the maximum gain of the input sensitivity function changes with each uncertain element.

wcst.Si.Sensitivity

ans = struct with fields:
    delta: 44
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      tau: 9

This result tells you that if the uncertainty range of delta increases by 10%, the peak input sensitivity
increases by about 4.4%. Similarly, a 10% increase in the uncertainty range of tau causes about a
0.9% increase in the peak input sensitivity.

Compatibility Considerations
wcgainoptions is not recommended
Not recommended starting in R2019a

Use wcOptions to create option sets for wcgain, wcdiskmargin, and other worst-case computation
functions.

There are no plans to remove wcgainoptions at this time.

See Also
wcOptions

Introduced in R2011b
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wcgainplot
(Not recommended) Graphical worst-case gain analysis

Note wcgainplot is not recommended. Use wcsigmaplot instead.

Syntax
wcgainplot(sys)
wcgainplot(sys,w)
wcgainplot(sys,...,options)

Description
wcgainplot(sys) plots the nominal and worst-case gains of the uncertain system sys as a function
of frequency. For multi-input, multi-output (MIMO) systems, gain refers to the largest singular value
of the frequency response matrix. (See sigma for more information about singular values.) The plot
includes:

• Nominal — nominal gain of sys
• Worst — the response falling within the uncertainty of sys that has the highest peak gain
• Worst-case gain (lower bound) — the lowest worst-case gain at each frequency
• Worst-case gain (upper bound) — the highest gain within the uncertainty at each frequency
• Sampled Uncertainty — 20 responses randomly sampled from sys

wcgainplot(sys,w) focuses the plot on the frequencies specified by w.

• If w is a cell array {wmin,wmax}, wcgainplot plots the worst-case gains in the range
{wmin,wmax}.

• If w is an array of frequencies, wcgainplot plots the worst-case gains at each frequency in the
array.

wcgainplot(sys,...,options) uses the options set options to specify additional options for the
computation of the worst-case gains. Use wcOptions to create the options set.

Input Arguments
sys

Uncertain dynamic system.

w

Frequencies of worst-case gain plots. Specify frequencies in radians/TimeUnit, where TimeUnit is
the time unit of sys.

• If w is a cell array {wmin,wmax}, wcgainplot plots the worst-case gains in the range
{wmin,wmax}.
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• If w is an array of frequencies, wcgainplot plots the worst-case gains at each frequency in the
array.

options

Options set specifying additional options for the computation of the worst-case gains. Use
wcOptions to create the options set.

Algorithms
wcgainplot uses wcgain to compute the worst-case gains. Use the options argument to
wcgainplot to set options for the wcgain algorithm.

wcgainplot uses usample to compute the Sampled Uncertainty curves.

See Also
wcgain | wcsigmaplot | usample | sigma | wcOptions

Introduced in R2011b
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wcmargin
(Not recommended) Worst-case disk stability margins of uncertain feedback loops

Note wcmargin is not recommended. Use wcdiskmargin instead. For more information, see
“Compatibility Considerations”.

Syntax
wcmarg = wcmargin(L)

wcmargi = wcmargin(p,c)

[wcmargi,wcmargo] = wcmargin(p,c)

wcmargi = wcmargin(p,c,opt)

[wcmargi,wcmargo] = wcmargin(p,c,opt)

Description
Classical gain and phase margins define the allowable loop-at-a-time variations in the nominal system
gain and phase for which the feedback loop retains stability.

An alternative to classical gain and phase margins is the disk margin. The disk margin is the largest
region for each channel such that for all gain and phase variations inside the region the nominal
closed-loop system is stable. See “Stability Analysis Using Disk Margins” to learn more about the
algorithm.

Consider a system with uncertain elements. It is of interest to determine the margin of each
individual channel in the presence of uncertainty. These margins are called worst-case margins.
Worst-case margin, wcmargin calculates the largest disk margin such that for values of the
uncertainty and all gain and phase variations inside the disk, the closed-loop system is stable. The
worst-case gain and phase margin bounds are defined based on the balanced sensitivity function.
Hence, results from the worst-case margin calculation imply that the closed-loop system is stable for
a given uncertainty set and would remain stable in the presence of an additional gain and phase
margin variation in the specified input/output channel.

wcmargL = wcmargin(L) calculates the combined worst-case input and output loop-at-a-time gain/
phase margins of the feedback loop consisting of the loop transfer matrix L in negative feedback with
an identity matrix. L must be an uncertain system, uss or ufrd object. If L is a uss object, the
frequency range and number of points used to calculate wcmargL are chosen automatically. Note that
in this case, the worst-case margins at the input and output are equal because an identity matrix is
used in feedback. wcmarg is a NU-by-1 structure with the following fields:

Field Description
GainMargin Guaranteed bound on worst-case, single-loop gain margin at plant inputs.

Loop-at-a-time analysis.
PhaseMargin Loop-at-a-time worst-case phase margin at plant inputs. Units are degrees.
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Field Description
Frequency Frequency associated with the worst-case margin (rad/s).
WCUnc Structure of the worst-case uncertainty values associated with the worst-case

disk gain and phase margins for the i-th loop L(i,i).
Sensitivity Struct with M fields. Field names are names of uncertain elements of P and C.

Values of fields are positive numbers, which each entry indicating the local
sensitivity of the worst-case margins to all the individual uncertain element's
uncertainty ranges. For instance, a value of 50 indicates that if the uncertainty
range is enlarged by 8%, then the worst-case gain should increase by about
4%. If the Sensitivity property of the wcOptions object is 'off', the
values are NaN.

[wcmargi,wcmargo] = wcmargin(P,C) calculates the combined worst-case input and output
loop-at-a-time gain/phase margins of the feedback loop consisting of C in negative feedback with P.
C should only be the compensator in the feedback path, without reference channels, if it is a 2-Dof
architecture. That is, if the closed-loop system has a 2-Dof architecture the reference channel of the
controller should be eliminated resulting in a 1-Dof architecture as shown in the following figure.
Either P or C must be an uncertain system, uss or ufrd, or an uncertain matrix, umat. If P and C are
ss/tf/zpk or uss objects, the frequency range and number of points used to calculate wcmargi
and wcmargo are chosen automatically.

Basic Syntax

[wcmargi,wcmargo] = wcmargin(L) 
[wcmargi,wcmargo] = wcmargin(P,C) 

wcmargi and wcmargo are structures corresponding to the loop-at-a-time worst-case, single-loop
gain and phase margin of the channel. For the single-loop transfer matrix L of size N-by-N, wcmargi
is a N-by-1 structure. For the case with two input arguments, the plant model P will have NY outputs
and NU inputs and hence the controller C must have NU outputs and NY inputs. wcmargi is a NU-by-1
structure with the following fields:

Field Description
GainMargin Guaranteed bound on worst-case, single-loop gain margin at plant inputs.

Loop-at-a-time analysis.
PhaseMargin Loop-at-a-time worst-case phase margin at plant inputs. Units are degrees.
Frequency Frequency associated with the worst-case margin (rad/s).
WCUnc Structure of the worst-case uncertainty values associated with the worst-case

disk gain and phase margins for the i-th loop L(i,i).
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Field Description
Sensitivity Struct with M fields. Field names are names of uncertain elements of P and

C. Values of fields are positive numbers, which each entry indicating the local
sensitivity of the worst-case margins to all the individual uncertain element's
uncertainty ranges. For instance, a value of 50 indicates that if the uncertainty
range is enlarged by 8%, then the worst-case gain should increase by about
4%. If the Sensitivity property of the wcOptions object is 'off', the
values are NaN.

wcmargo is an N-by-1 structure for the single loop transfer matrix input and wcmargo is an NY-by-1
structure when the plant and controller are input. In both these cases, wcmargo has the same fields
as wcmargi. The worst-case bound on the gain and phase margins are calculated based on a
balanced sensitivity function.

[wcmargi,wcmargo] = wcmargin(L,opt) and

[wcmargi,wcmargo] = wcmargin(p,c,opt) specify options described in opt. (See wcOptions
for more details on the options for wcmargin.)

The sensitivity of the worst-case margin calculations to the individual uncertain elements is selected
using the options object opt. To compute sensitivities, create a wcOptions options object, and set
the Sensitivity property to 'on'.

Examples
MIMO Loop-at-a-Time Margins

This example is designed to illustrate that loop-at-a-time margins (gain, phase, and/or distance to –1)
can be inaccurate measures of multivariable robustness margins. Margins of the individual loops can
be very sensitive to small perturbations within other loops.

The nominal closed-loop system considered here is shown as follows.

G and K are 2-by-2 multi-input/multi-output (MIMO) systems, defined as

G: = 1
s2 + α2

s− α2 α(s + 1)
−α(s + 1) s− α2

, K = I2

Set α := 10, construct the nominal model G in state-space form, and compute its frequency response.

a = [0 10;-10 0]; 
b = eye(2); 
c = [1 8;-10 1]; 
d = zeros(2,2); 
G = ss(a,b,c,d); 
K = [1 -2;0 1]; 
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The nominal plant was analyzed previously using the command. Based on experimental data, the gain
of the first input channel, b(1,1), is found to vary between 0.97 and 1.06. The following statement
generates the updated uncertain model.

ingain1 = ureal('ingain1',1,'Range',[0.97 1.06]); 
b = [ingain1 0;0 1]; 
Gunc = ss(a,b,c,d); 

Because of differences between measured data and the plant model an 8% unmodeled dynamic
uncertainty is added to the plant outputs.

unmod = ultidyn('unmod',[2 2],'Bound',0.08); 
Gmod = (eye(2)+unmod)*Gunc; 
Gmodg = ufrd(Gmod,logspace(-1,3,60)); 

You can use the command wcmargin to determine the worst-case gain and phase margins in the
presences of the uncertainty.

[wcmi,wcmo] = wcmargin(Gmodg,K); 

The worst-case analysis corresponds to maximum allowable disk margin for all possible defined
uncertainty ranges. The worst-case single-loop margin analysis performed using wcmargin results in
a maximum allowable gain margin variation of 1.31 and phase margin variations of ± 15.6 degs in the
second input channel in the presence of the uncertainties 'unmod' and 'ingain1'. wcmi(1)

ans = 
     GainMargin: [0.3613 2.7681] 
    PhaseMargin: [-50.2745 50.2745] 
      Frequency: 0.1000 
     Sensitivity: [1x1 struct] 
wcmi(2) 
ans = 
     GainMargin: [0.7585 1.3185] 
    PhaseMargin: [-15.6426 15.6426] 
      Frequency: 0.1000 
     Sensitivity: [1x1 struct] 

Hence even though the second channel had infinite gain margin and 90 degrees of phase margin,
allowing variation in both uncertainties, 'unmod' and 'ingain1' leads to a dramatic reduction in
the gain and phase margin.

You can display the sensitivity of the worst-case margin in the second input channel to 'unmod' and
'ingain1' as follows:

wcmi(2).Sensitivity
ans = 
    ingain1: 12.1865
      unmod: 290.4557

The results indicate that the worst-case margins are not very sensitive to the gain variation in the
first input channel, 'ingain1', but very sensitive to the LTI dynamic uncertainty at the output of the
plant.

The worst-case single-loop margin at the output results in a maximum allowable gain margin
variation of 1.46 and phase margin variation of ± 21.3 degs in the second output channel in the
presence of the uncertainties 'unmod' and 'ingain1'.
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wcmo(1) 
ans = 
     GainMargin: [0.2521 3.9664] 
    PhaseMargin: [-61.6995 61.6995] 
      Frequency: 0.1000 
     Sensitivity: [1x1 struct] 
wcmo(2) 
ans = 
     GainMargin: [0.6835 1.4632] 
    PhaseMargin: [-21.2984 21.2984] 
      Frequency: 0.1000 
     Sensitivity: [1x1 struct] 

You can display the sensitivity of the worst-case margin in the second output channel to 'unmod' and
'ingain1' as follows:

wcmo(2).Sensitivity
ans = 
    ingain1: 16.3435
      unmod: 392.1320

The results are similar to the worst-case margins at the input. However, the worst-case margins at
the second output channel are even more sensitive to the LTI dynamic uncertainty than the input
channel margins.

Compatibility Considerations
wcmargin is not recommended
Not recommended starting in R2019a

For worst-case stability margins, use the wcdiskmargin command. wcdiskmargin can compute
both loop-at-a-time and multiloop margins, while wcmargin only computes loop-at-a-time margins.
wcdiskmargin can also compute stability margins with respect to independent, concurrent
variations at both the plant inputs and plant outputs. Further, wcdiskmargin includes an optional
skew parameter, sigma, that biases modeled gain variation toward gain increase or decrease.

The following table shows some typical uses of wcmargin and how to update your code to use
wcdiskmargin instead.

Not Recommended Recommended
wcmarg = wcmargin(L) [wcDM,wcu] = wcdiskmargin(L,'siso')
[wcmargI,wcmargO] = wcmargin(P,C) [wcmargI,wcuI] =

wcdiskmargin(C*P,'siso'), for margins at
plant input

[wcmargO,wcuO] =
wcdiskmargin(P*C,'siso'), for margins at
plant output

There are no plans to remove wcmargin at this time.

See Also
wcdiskmargin | dmplot | loopsens | robstab | usubs | wcgain | wcOptions
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wcmarginOptions
(Not recommended) Option set for wcmargin

Note wcmarginOptions is not recommended. Use wcOptions instead.

Syntax
opt = wcmarginOptions
opt = wcmarginOptions(Name,Value,...)

Description
opt = wcmarginOptions returns the default option set for wcmargin.

opt = wcmarginOptions(Name,Value,...) creates an option set with the options specified by
one or more Name,Value pair arguments.

Input Arguments
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Sensitivity

Determines whether to compute the sensitivity of worst-case gain with respect to each individual
uncertain element.

Sensitivity takes the following values:

• 'on' — Sensitivity of the worst-case gain is computed with respect to each individual uncertain
element. This provides an indication of which elements are most problematic.

• 'off' — wcmargin does not compute the sensitivity of the worst-case gain with respect to each
individual uncertain element.

Default: 'off'

AbsTol

Absolute tolerance on computed worst-case margin bounds.

The algorithm terminates if UpperBound-LowerBound <= max(AbsTol, Reltol*UpperBound)

Default: 0.02

RelTol

Relative tolerance on computed worst-case margin bounds.
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The algorithm terminates if UpperBound-LowerBound <= max(AbsTol, Reltol*UpperBound)

Default: 0.05

Output Arguments
opt

Option set containing the specified options for wcmargin.

Examples
Create an options set for wcmargin with an 0.01 and 0.03 as the absolute and relative tolerances on
the worst-case margin bounds, respectively.

opt = wcmarginOptions('AbsTol',0.01,'RelTol',0.03);

Alternatively, use dot notation to set the values of opt.

opt = wcmarginOptions;
opt.AbsTol = 0.01;
opt.RelTol = 0.03;

See Also
wcOptions

Introduced in R2011b
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wcnorm
Worst-case norm of uncertain matrix

Syntax
maxnorm = wcnorm(m)

[maxnorm,wcu] = wcnorm(m)

[maxnorm,wcu] = wcnorm(m,opts)

[maxnorm,wcu,info] = wcnorm(m)

[maxnorm,wcu,info] = wcnorm(m,opts)

Description
The norm of an uncertain matrix generally depends on the values of its uncertain elements.
Determining the maximum norm over all allowable values of the uncertain elements is referred to as
a worst-case norm analysis. The maximum norm is called the worst-case norm.

As with other uncertain-system analysis tools, only bounds on the worst-case norm are computed. The
exact value of the worst-case norm is guaranteed to lie between these upper and lower bounds.

Basic syntax

Suppose mat is a umat or a uss with M uncertain elements. The results of

[maxnorm,maxnormunc] = wcnorm(mat) 

maxnorm is a structure with the following fields.

Field Description
LowerBound Lower bound on worst-case norm, positive scalar.
UpperBound Upper bound on worst-case norm, positive scalar.

maxnormunc is a structure that includes values of uncertain elements and maximizes the matrix
norm. There are M field names, which are the names of uncertain elements of mat. The value of each
field is the corresponding value of the uncertain element, such that when jointly combined, lead to
the norm value in maxnorm.LowerBound. The following command shows the norm:

 norm(usubs(mat,maxnormunc)) 

Basic syntax with third output argument

A third output argument provides information about sensitivities of the worst-case norm to the
uncertain elements ranges.

[maxnorm,maxnormunc,info] = wcnorm(mat) 

The third output argument info is a structure with the following fields:
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Field Description
Model Index of model with largest gain (when mat is an array of uncertain matrices)
WorstPerturbati
on

Structure of worst-case uncertainty values. The fields of
info.WorstPerturbation are the names of the uncertain elements in mat,
and each field contains the worst-case value of the corresponding element.

Sensitivity A struct with M fields. Fieldnames are names of uncertain elements of sys.
Field values are positive numbers, each entry indicating the local sensitivity of
the worst-case norm in maxnorm.LowerBound to all of the individual uncertain
elements’ uncertainty ranges. For instance, a value of 25 indicates that if the
uncertainty range is increased by 8%, then the worst-case norm should increase
by about 2%. If the Sensitivity property of the wcOptions object is 'off',
the values are NaN.

BadUncertainVal
ues

Same as WorstPerturbation. Included for compatibility with R2016a and
earlier.

ArrayIndex Same as Model. Included for compatibility with R2016a and earlier.

Examples

Worst-Case Norm and Condition Number of an Uncertain Matrix

Construct an uncertain matrix and compute the worst-case norm of the matrix and of its inverse.
These computations let you accurately estimate the worst-case, or the largest, value of the condition
number of the matrix.

a = ureal('a',5,'Range',[4 6]); 
b = ureal('b',3,'Range',[2 10]); 
c = ureal('c',9,'Range',[8 11]); 
d = ureal('d',1,'Range',[0 2]); 

M = [a b;c d];
Mi = inv(M);

maxnormM = wcnorm(M)

maxnormM = struct with fields:
    LowerBound: 14.7199
    UpperBound: 14.7227

maxnormMi = wcnorm(Mi)

maxnormMi = struct with fields:
    LowerBound: 2.5963
    UpperBound: 2.5968

The condition number of M must be less than the product of the two upper bounds for all values of the
uncertain elements of M. Conversely, the condition number of the largest value of M must be at least
equal to the condition number of the nominal value of M. Compute these bounds on the worst-case
value of the condition number.
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condUpperBound = maxnormM.UpperBound*maxnormMi.UpperBound; 
condLowerBound = cond(M.NominalValue); 
[condLowerBound condUpperBound]

ans = 1×2

    5.0757   38.2312

The range between these lower and upper bounds is fairly large. You can get a more accurate
estimate. Recall that the condition number of an n-by-m matrix M can be expressed as an
optimization, where a free norm-bounded matrix Δ tries to align the gains of M and inv(M):

κ M = max
Δ ∈ Cm × m

σmax MΔM−1

σmax Δ ≤ 1

If M is uncertain, then the worst-case condition number involves further maximization over the
possible values of M. Therefore, you can compute the worst-case condition number of an uncertain
matrix by using a ucomplexm uncertain element and using wcnorm to carry out the maximization.

Create a 2-by-2 ucomplexm element with nominal value 0.

Delta = ucomplexm('Delta',zeros(2,2));

The range of values represented by Delta includes 2-by-2 matrices with the maximum singular value
less than or equal to 1.

Create the expression involving M, Delta, and inv(M).

H = M*Delta*Mi;

opt = wcOptions('MussvOptions','m5');
[maxKappa,wcu,info] = wcnorm(H,opt);
maxKappa

maxKappa = struct with fields:
    LowerBound: 26.8406
    UpperBound: 38.2349

Verify that the values in wcu make the condition number as large as maxKappa.LowerBound.

cond(usubs(M,wcu))

ans = 26.9629

Algorithms
See wcgain.

See Also
norm | wcgain | wcOptions
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wcdiskmarginplot
Visualize worst-case disk-based stability margins

Syntax
wcdiskmarginplot(Lunc)
wcdiskmarginplot(Lunc,sigma)
wcdiskmarginplot( ___ ,w)
wcdiskmarginplot( ___ ,opts)

Description
wcdiskmarginplot(Lunc) plots the nominal and worst-case disk-based gain and phase margins for
the SISO or MIMO negative feedback loop feedback(Lunc,eye(N)), where N is the number of
inputs and outputs in the uncertain open-loop response Lunc.

For MIMO responses, diskmarginplot uses multiloop disk margins. (For details about disk-based
gain and phase margins, see diskmargin.) The plot includes:

• Nominal — Nominal gain and phase margins of Lunc. The disk-based gain margin at each
frequency is ±GM, where GM is the value shown in the plot in dB. Similarly, the disk-based phase
margin is ±PM degrees, where PM is the value shown on the plot.

• Worst perturbation — The disk-based gain and phase margins for the worst perturbation within
the uncertainty range Lunc.Uncertainty. The worst perturbation corresponds to the wcu
output argument of wcdiskmargin. It is the perturbation that yields the smallest disk margin.

• Worst-case margin (lower bound) — Lower bound on the worst-case margins at each frequency.
This curve represents the envelope produced by finding the smallest disk margin possible at each
frequency, within the uncertainty of Lunc.

• Worst-case margin (upper bound) — Upper bound on the worst-case margins at each frequency.
• Sampled Uncertainty — Margins of responses randomly sampled from Lunc.

wcdiskmarginplot(Lunc,sigma) plots the disk-based gain and phase margins computed using
the skew sigma to bias the gain variation toward gain increase (sigma > 0) or gain decrease (sigma
< 0). If you have used wc to obtain worst-case disk-based margins with some particular sigma, you
can use this syntax to see the frequency dependence of the margins at that sigma value. For sigma
≠ 0, the plotted value is GM = min(gmax,1/max(0,gmin)). In other words, the plot shows the
largest amount of gain change [1/GM,GM] that fits within the disk-based gain margin [gmin,gmax]
of the system at the specified sigma.

wcdiskmarginplot( ___ ,w) plots the worst-case margins at the frequencies specified by w.

 wcdiskmarginplot

1-647



• If w is a cell array of the form {wmin,wmax}, then the plot shows the margins at frequencies
ranging between wmin and wmax.

• If w is a vector of frequencies, then the plot shows the margins at each specified frequency.

wcdiskmarginplot( ___ ,opts) uses specified options to customize plot elements, aspects of the
worst-case margin computation, or both. Use diskmarginoptions to specify customizations for the
plot. Use wcOptions to specify customizations for the computation. You can use this argument with
any of the previous syntaxes.

Examples

Plot Worst-Case Disk Margins of Uncertain System

Plot the worst-case disk-based gain and phase margins of the following system:

Lunc = 1
s2 + a + 10

1 + 0 . 1Δ ,

where a is an uncertain real parameter with a nominal value of 1 and a range of 0.2–2, and Δ is a
gain-bounded dynamic uncertainty.

a = ureal('a',1,'Range',[.2 2]);
Delta = ultidyn('Delta',1);
Lunc = tf(1,[1 a 10]) * (1+0.1*Delta);

wcdiskmarginplot(Lunc)
legend('location','SouthEast')
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The Worst perturbation curve corresponds to the combination of uncertain elements that yields
the smallest disk margin across frequency. This perturbation corresponds to the wcu output of
wcdiskmargin.

The Worst-case margin curves show the lower and upper bounds on the worst-case margins at
each frequency. For any perturbation within the specified uncertainty range, the disk-based gain or
phase margins of the perturbed system lie below the Worst-case margin (upper bound) curve. In
other words, this curve is the envelope produced by finding the smallest margins within the
uncertainty at each frequency. For this system, the lower and upper bounds are close enough to
appear identical on the plot. (See wcdiskmargin for more information about these bounds.)

Focus the plot on the region between 0.5 and 10 rad/s.

w = {0.5,10};
wcdiskmarginplot(Lunc,w)
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Examine the effect on the worst-case margins of increasing the uncertainty range. To do this without
changing the uncertainty specified in Lunc, use the ULevel option of wcOptions. This option scales
the normalized uncertainty by the factor you specify. For example, examine the worst-case margins
for a 50% greater uncertainty range.

opts = wcOptions('ULevel',1.5);
wcdiskmarginplot(Lunc,w,opts)
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In this case, the gain and phase margins for the worst perturbation reach zero, and the worst margin
at any frequency is also zero. This result means that extending the uncertainty range this far
encompasses some perturbations that drive the closed-loop system feedback(Lunc,1) unstable.

Worst-Case Disk Margin Plot with Customized Appearance

Plot the worst-case disk margins as a function of frequency of a system with the following open-loop
response.

a  = ureal('a',10,'PlusMinus',[-4,4]);
L = tf(25,[1 a a a]);

For the plot, use the default preferences specified in your Control System Toolbox preference, except
specify the following attributes:

• Frequency units: Hz
• Gain margins on a log scale, in absolute units
• Grid on

opts = diskmarginoptions('cstprefs');
opts.FreqUnits = 'Hz';
opts.MagScale = 'log';
opts.MagUnits = 'abs';
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opts.grid = 'on';

w = {2*pi*1e-3,2*pi*10};   % rad/s
wcdiskmarginplot(L,w,opts)

The plot you obtain might differ in appearance, depending on your current Control System Toolbox
preference settings. (See “Toolbox Preferences Editor”.)

Input Arguments
Lunc — Uncertain open-loop response
uss | ufrd | genss | genfrd

Open-loop response, specified as an uncertain model such as a uss, ufrd, genss, or genfrd model.
L can be SISO or MIMO, as long as it has the same number of inputs and outputs.
wcdiskmarginplot plots the worst-case disk-based gain and phase margins for the negative-
feedback closed-loop system feedback(L,eye(N)).
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To plot the worst-case margins of the positive feedback system feedback(L,eye(N),+1), use
wcdiskmargin(-L).

If L is a frequency-response data model (such as ufrd), then wcdiskmarginplot plots the margins
at each frequency represented in the model.

sigma — Skew
0 (default) | real scalar

Skew of uncertainty region used to compute the stability margins, specified as a real scalar. This
parameter biases the uncertainty used to model gain and phase variations toward gain increase or
gain decrease.

• The default sigma = 0 uses a balanced model of gain variation in a range [gmin,gmax], with
gmin = 1/gmax.

• Positive sigma uses a model with more gain increase than decrease (gmin > 1/gmax).
• Negative sigma uses a model with more gain decrease than increase (gmin < 1/gmax).

For more detailed information about how the choice of sigma affects the margin computation, see
“Stability Analysis Using Disk Margins”.

When plotting the gain margins of a dynamic system versus frequency, use the default sigma = 0 to
get unbiased estimates of gain and phase margins. For sigma = 0, the worst-case disk-based gain
margin at each frequency is ±GM, where GM is the value shown in the plot in dB.

If you have used wcdiskmargin to obtain worst-case disk-based margins with some particular
sigma, you can use this syntax to see the frequency dependence of the margins at that sigma value.
For sigma ≠ 0, plotted value is GM = min(gmax,1/max(0,gmin)). In other words, the plot shows
the largest amount of gain change [1/GM,GM] that fits within the disk-based gain margin
[gmin,gmax] of the system at the specified sigma.

w — Frequencies
{wmin,wmax} | vector

Frequencies at which to plot stability margins, specified as the cell array {wmin,wmax} or as a vector
of frequency values.

• If w is a cell array of the form {wmin,wmax}, then the plot shows the margins at frequencies
between wmin and wmax.

• If w is a vector of frequencies, then the plot shows the margins at each specified frequency. For
example, use logspace to generate a row vector with logarithmically spaced frequency values.

Specify frequencies in units of rad/TimeUnit, where TimeUnit is the TimeUnit property of L.
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opts — Plot and computation options
wcOptions options set | diskmarginplot options set

Plot options, specified as:

• A diskmarginplot options set that you create with diskmarginoptions. Use these options to
customize aspects of plot appearance such as title, axis labels, and grids.

• A wcOptions options set. Use these options to customize aspects of the worst-case margins
computation, such as scaling the uncertainty to examine the effect of smaller or larger uncertainty
range without changing the uncertainty levels in Lunc.

• One of each type of options set, to specify both plot options and computation options. Separate the
two options sets by a comma, as in wcdiskmarginplot(Lunc,w,plotops,compopts).

See Also
diskmarginplot | diskmargin | diskmarginoptions | wcdiskmargin | wcOptions

Topics
“Stability Analysis Using Disk Margins”

Introduced in R2020a
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wcOptions
Option set for worst-case analysis

Syntax
opts = wcOptions
opts = wcOptions(Name,Value,...)

Description
opts = wcOptions returns the default option set for worst-case analysis commands such as
wcgain, wcdiskmargin, or wcsigmaplot.

opts = wcOptions(Name,Value,...) creates an option set with the options specified by one or
more Name,Value pair arguments.

Examples

Options for Worst-Case Gain Calculation

Create an options set to calculate the worst-case gain while allowing the uncertain parameters to
vary by 20% more than the range specified in the model. Also, configure the options to include the
element-by-element sensitivity in the calculation.

opts = wcOptions('ULevel',1.2,'Sensitivity','on');

Alternatively, create a default option set, and use dot notation to set the values of particular options.

opts = wcOptions;
opts.ULevel = 1.2;
opts.Sensitivity = 'on';

Use opts as an input argument to a worst-case analysis command such as wcgain.

Improve Worst-Case Perturbation

Specifying certain options for the structured-singular-value computation that underlies the worst-gain
computation can yield better results in some cases. For example, consider a sample plant and
controller.

load('wcgExampleData.mat')

This command loads gPlant, a MIMO plant with 10 outputs, 8 inputs, and 11 uncertain elements. It
also loads Kmu, a state-space controller model. Form a closed-loop system with these models, and
examine the worst-case gain.
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CL = lft(gPlant,Kmu);
[wcg,wcu] = wcgain(CL);
wcg

wcg = struct with fields:
           LowerBound: 10.8742
           UpperBound: 11.2135
    CriticalFrequency: 6.6794

There is a large difference between the lower and upper bounds on the worst-case gain. To get a
better estimate of the actual worst-case gain, increase the number of restarts that wcgain uses for
computing of the worst-case perturbation and associated lower bound. Doing so can result in a
tighter lower bound. This option does not affect the upper-bound calculation.

opt = wcOptions('MussvOptions','m3');
[wcg,wcu] = wcgain(CL,opt);
wcg

wcg = struct with fields:
           LowerBound: 10.8742
           UpperBound: 11.2135
    CriticalFrequency: 6.6794

The difference between the lower bound and upper bound on the worst-case gain is much smaller.
The critical frequency is different as well.

Input Arguments
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'ULevel','1.5','Sensitivity','on'

ULevel — Uncertainty level
1 (default) | positive scalar

Uncertainty level to use for the worst-case computation, specified as the comma-separated pair
consisting of 'ULevel' and a positive scalar value. This option scales the normalized uncertainty by
the factor you specify. Such scaling lets you examine the effect of smaller or larger uncertainty range
without changing the uncertainty levels in your model. For instance, to see the effect of doubling the
ranges of all uncertain parameters, set 'ULevel' to 2. To see the effect of shrinking the ranges, set
'ULevel' to 0.5. The default value, 1, corresponds to the amount of uncertainty specified in the
model.

Display — Display progress of computation and summary report
'off' (default) | 'on'

Display progress and summary report of the worst-case gain computation, specified as the comma-
separated pair consisting of 'Display' and one of these values:
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• 'off' — Do not display progress and report.
• 'on' — Display progress and report. When you use this option, a progress indicator and summary

of results is displayed in the command window, similar to the following.
The worst-case gain is at most 11.2.
 -- There is a bad perturbation amounting to 100% of the modeled uncertainty.
 -- This perturbation causes a gain of 9.03 at the frequency 5.5 rad/seconds.

This setting overrides the silent ('s') option in the MussvOptions option.

VaryFrequency — Compute worst-case gain as function of frequency
'off' (default) | 'on'

Return worst-case gain as a function of frequency, specified as the comma-separated pair consisting
of 'VaryFrequency' and one of these values:

• 'off' — Only return worst-case gains at frequencies where the worst values occur.
• 'on' — Compute worst-case gains over a frequency grid suitable for plotting. The frequency grid

is chosen automatically based on system dynamics. This calculation is done in addition to
identifying the critical frequency where the gain peaks. Access the frequency values and
corresponding gains in the info output of wcgain or other worst-case analysis command.

This option is ignored for ufrd and genfrd models.

Sensitivity — Calculate sensitivity of worst-case gains
'off' (default) | 'on'

Calculate the sensitivity of the worst-case gain to each uncertain element in the model, specified as
the comma-separated pair consisting of 'Sensitivity' and either 'off' or 'on'.

Each uncertain element contributes to the overall worst case in a coupled manner. Set this option to
'on' to estimate the sensitivity of the margin to each element. This element-by-element sensitivity
provides an indication of which elements are most problematic. Access the sensitivity estimates in the
info output of the worst-case computation command.

SensitivityPercent — Percentage variation of uncertainty for computing sensitivity
25 (default) | positive scalar value

Percentage variation of uncertainty level for computing sensitivity, specified as the comma-separated
pair consisting of 'SensitivityPercent' and a positive scalar value. The sensitivity to a particular
uncertain element is estimated using a finite difference calculation. This calculation increases the
(normalized) amount of uncertainty on this element by some percentage, computes the resulting
worst-case gain, and computes the ratio of percent variations. This option specifies the percentage
increase in uncertainty level applied to each element. The default value is 25%.

MussvOptions — Options for mussv calculation
'' (default) | character vector

Options for the mussv calculation that underlies the worst-case calculations, specified as the comma-
separated pair consisting of 'MussvOptions' and a character vector such as 'sm3' or 'ad'.

Some MussvOptions values that are especially useful for improving worst-case calculations include:

• 'a' — Force the use of LMI optimization to compute the μ upper bound, which yields better
results in general but can be expensive when some ureal elements are repeated multiple times.
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• 'mN' — Use multiple restarts when computing the μ lower bound, which corresponds to the lower
bound for the worst-case gain. This option can reduce the gap between the lower bound and upper
bound on the worst-case gains. N is the number of restarts. For example, setting
'MussvOptions' to 'm3' causes three restarts. See “Improve Worst-Case Perturbation” on page
1-655 for an example.

See mussv for the remaining available options and corresponding characters. The default, '', uses
the default options for mussv.

Output Arguments
opts — Options for worst-case calculations
wcOptions object

Options for worst-case calculations, returned as a wcOptions object. Use the options as an input
argument to any of the worst-case analysis functions, such as wcgain and wcsigmaplot. For
example:

[wcgain,wcu,info] = wcgain(usys,opts)

See Also
wcgain | wcsigmaplot | wcdiskmargin

Topics
“Robustness and Worst-Case Analysis”

Introduced in R2016b
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wcsens
(Not recommended) Calculate worst-case sensitivity and complementary sensitivity functions of plant-
controller feedback loop

Note wcsens is not recommended. Use wcgain instead. For more information, see “Compatibility
Considerations”.

Syntax
wcst = wcsens(L)

wcst = wcsens(L,type)

wcst = wcsens(L,opt)

wcst = wcsens(L,type,scaling)

wcst = wcsens(L,type,scaling,opt)

wcst = wcsens(P,C)

wcst = wcsens(P,C,type)

wcst = wcsens(P,C,opt)

wcst = wcsens(P,C,type,scaling)

wcst = wcsens(P,C,type,scaling,opt)

Description
The sensitivity function, S = (I + L)–1, and the complementary sensitivity function, T = L(I + L)–1,
where L is the loop gain matrix associated with the input, CP, or output, PC, are two transfer
functions related to the robustness and performance of the closed-loop system. The multivariable
closed-loop interconnection structure, shown below, defines the input/output sensitivity,
complementary sensitivity and loop transfer functions.

The following table gives the values of the input and output sensitivity functions for this control
structure.
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Description Equation
Input sensitivity Si (closed-loop transfer function from d1 to e1) Si = (I + CP)–1

Input complementary sensitivity Ti (closed-loop transfer function
from d1 to e2)

Ti = CP(I + CP)–1

Output sensitivity So (closed-loop transfer function from d2 to e2) So = (I + PC)–1

Output complementary sensitivity To (closed-loop transfer function
from d2 to e4)

To = PC(I + PC)–1

Input loop transfer function Li Li = CP
Output loop transfer function Lo Lo = PC

wcst = wcsens(L) calculates the worst-case sensitivity and complementary sensitivity functions for
the loop transfer matrix L in feedback in negative feedback with an identity matrix. If L is a uss
object, the frequency range and number of points are chosen automatically.

wcst = wcsens(P,C) calculates the worst-case sensitivity and complementary sensitivity functions
for the feedback loop C in negative feedback with P. C should only be the compensator in the
feedback path, not any reference channels, if it is a 2-dof architecture (see loopsens). If P and C are
ss/tf/zpk or uss objects, the frequency range and number of points are chosen automatically. wcst
is a structure with the following substructures:

Fields of wcst

Field Description
Si Worst-case input-to-plant sensitivity function
Ti Worst-case input-to-plant complementary sensitivity function
So Worst-case output-to-plant sensitivity function
To Worst-case output-to-plant complementary sensitivity function
PSi Worst-case plant times input-to-plant sensitivity function
CSo Worst-case compensator times output-to-plant sensitivity function
Stable 1 if nominal closed loop is stable, 0 otherwise. NaN for frd/ufrd objects.

Each sensitivity substructure is a structures with five fields MaximumGain, BadUncertainValues,
System, BadSystem, Sensitivity derived from the outputs of wcgain.
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Fields of Si, So, Ti, To, PSi, CSo

Field Description
MaximumGain struct with fields LowerBound, UpperBound and CriticalFrequency.

LowerBound and UpperBound are bounds on the unweighted maximum
gain of the uncertain sensitivity function. CriticalFrequency is the
frequency at which the maximum gain occurs.

BadUncertainValues Struct, containing values of uncertain elements which maximize the
sensitivity gain. There are M fluidness, which are the names of uncertain
elements of sensitivity function. The value of each field is the corresponding
value of the uncertain element, such that when jointly combined, lead to the
gain value in MaximumGain.LowerBound.

System Uncertain sensitivity function (ufrd or uss).
BadSystem Worst-case system based on the uncertain object values in

BadUncertainValues. BadSystem is defined as
BadSystem=usubs(System, BadUncertainValues).

Sensitivity Struct with M fields, fieldnames are names of uncertain elements of
system. Values of fields are positive numbers, each entry indicating the local
sensitivity of the maximum gain to all of the individual uncertain elements
uncertainty ranges. For instance, a value of 50 indicates that if the
uncertainty range is enlarged by 8%, then the maximum gain should
increase by about 4%. If the 'Sensitivity' property of the
wcgainOptions object is 'off', the values are NaN.

wcst = wcsens(L,type) and wcst = wcsens(P,C,type) allow selection of individual
Sensitivity and Complementary Sensitivity functions, type, as
'Si','Ti','So','To','PSi','CSo' corresponding to the sensitivity and complementary
sensitivity functions. Setting type to 'S' or 'T' selects all sensitivity functions
('Si','So','PSi','CSo') or all complementary sensitivity functions ('Ti','To'). Similarly,
setting type to 'Input' or 'Output' selects all input Sensitivity functions ('Si','Ti','PSi') or
all output sensitivity functions ('So,'To','CSo'). 'All' selects all six Sensitivity functions for
analysis (default). type may also be a cell array containing multiple function types, such as
{'Si','To'}.

wcst = wcsens(L,type,scaling) and wcst = wcsens(P,C,type,scaling) add a scaling
to the worst-case sensitivity analysis. scaling is one of the following:

• 'Absolute' (default) — Calculates bounds on the maximum gain of the uncertain sensitivity
function.

• 'Relative' — Finds bounds on the maximum relative gain of the uncertain sensitivity function.
That is, the maximum relative gain is the largest ratio of the worst-case gain and the nominal gain
evaluated at each frequency point in the analysis.

• LTI model (ss, tf, zpk, or frd) — Calculates bounds on the maximum scaled gain of the
uncertain sensitivity function. The input/output dimensions of the LTI model must be either 1-by-1,
or compatible with P and C.

You can also combine type and scaling in a cell array, e.g.

wcst = wcsens(P,C,{'Ti','So'},'Abs','Si','Rel','PSi',wt) 
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wcst = wcsens(P,C,opt) or wcst = wcsens(P,C,type,scaling,opt) specifies options for
the worst-case gain calculation as defined by opt. (See wcgainOptions for more details on the
options for wcsens.)

The sensitivity of the worst-case sensitivity calculations to the individual uncertain components can
be determined using the options object opt. To compute the sensitivities to the individual uncertain
components, create a wcgainOptions options object, and set the Sensitivity property to 'on'.

opt = wcgainOptions('Sensitivity','on'); 
wcst = wcsens(P,C,opt) 

Examples
The following constructs a feedback loop with a first order plant and a proportional-integral
controller. The time constant is uncertain and the model also includes an multiplicative uncertainty.
The nominal (input) sensitivity function has a peak of 1.09 at omega = 1.55 rad/sec. Since the plant
and controller are single-input / single-output, the input/output sensitivity functions are the same.

  delta = ultidyn('delta',[1 1]); 
  tau = ureal('tau',5,'range',[4 6]); 
  P = tf(1,[tau 1])*(1+0.25*delta); 
  C=tf([4 4],[1 0]); 
  looptransfer = loopsens(P,C); 
  Snom = looptransfer.Si.NominalValue; 
  norm(Snom,inf) 
  ans = 
    1.0864 

wcsens is then used to compute the worst-case sensitivity function as the uncertainty ranges over its
possible values. More information about the fields in wcst.Si can be found in the wcgain help. The
badsystem field of wcst.Si contains the worst case sensitivity function. This worst case sensitivity
has a peak of 1.52 at omega = 1.02 rad/sec. The maxgainunc field of wcst.Si contains the
perturbation that corresponds to this worst case sensitivity function.

wcst = wcsens(P,C)      
wcst = 
        Si: [1x1 struct] 
        Ti: [1x1 struct] 
        So: [1x1 struct] 
        To: [1x1 struct] 
       PSi: [1x1 struct] 
       CSo: [1x1 struct] 
    Stable: 1 
Swc = wcst.Si.BadSystem; 
omega = logspace(-1,1,50); 
bodemag(Snom,'-',Swc,'-.',omega); 
legend('Nominal Sensitivity','Worst-Case Sensitivity',... 
  'Location','SouthEast') 
norm(Swc,inf) 
ans = 
    1.5075 

For multi-input/multi-output systems the various input/output sensitivity functions will, in general, be
different.
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Compatibility Considerations
wcsens is not recommended
Not recommended starting in R2019a

Use of wcsens is not recommended. Instead, form the transfer function you want to analyze, and use
wcgain to obtain the worst-case sensitivity. This approach has improved numeric stability and more
reliable results relative to wcsens. To form the transfer function, assuming the following control
structure, refer to the following diagram and table.

The following table gives the values of the input and output sensitivity functions for this control
structure.

Description Equation
Input sensitivity Si (closed-loop transfer function from d1 to e1) Si = (I + CP)–1

Input complementary sensitivity Ti (closed-loop transfer function
from d1 to e2)

Ti = CP(I + CP)–1

Output sensitivity So (closed-loop transfer function from d2 to e2) So = (I + PC)–1

Output complementary sensitivity To (closed-loop transfer function
from d2 to e4)

To = PC(I + PC)–1

Input loop transfer function Li Li = CP
Output loop transfer function Lo Lo = PC

For an example, see “Worst-Case Sensitivity Functions of Feedback Loops”.

There are no plans to remove wcsens at this time.

References
J. Shin, G.J. Balas, and A.K. Packard, “Worst case analysis of the X-38 crew return vehicle flight
control system,” AIAA Journal of Guidance, Dynamics and Control, vol. 24, no. 2, March-April 2001,
pp. 261-269.

See Also
loopsens | robstab | usubs | wcgain | wcdiskmargin

Introduced before R2006a
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wcsigma
(Not recommended) Plot worst-case gain of uncertain system

Note wcsigma is not recommended. Use wcsigmaplot instead.

Syntax
wcsigma(usys)
wcsigma(usys,w)
wcsigma( ___ ,opts)

Description
wcsigma(usys) plots the nominal and worst-case gains of the uncertain system usys as a function
of frequency. For multi-input, multi-output (MIMO) systems, gain refers to the largest singular value
of the frequency response matrix. (See sigma for more information about singular values.) The plot
includes:

• Nominal — Nominal gain of usys.
• Worst perturbation — The response falling within the uncertainty of usys that has the highest

peak gain. This curve corresponds to the wcu output argument of wcgain.
• Worst-case gain (lower bound) — The lowest possible worst-case gain at each frequency.
• Worst-case gain (upper bound) — The highest possible gain within the uncertainty at each

frequency. This curve represents the envelope produced by finding the highest possible gain at
each frequency.

• Sampled Uncertainty — Responses randomly sampled from usys.

wcsigma(usys,w) focuses the plot on the frequencies specified by w.

• If w is a cell array of the form {wmin,wmax}, then wcsigma plots the worst-case gains in the
range {wmin,wmax}.

• If w is an array of frequencies, then wcsigma plots the worst-case gains at each frequency in the
array.

wcsigma( ___ ,opts) specifies additional options for the computation. Use wcOptions to create
opts.

Examples

Plot Worst-Case Gain of Uncertain System

Plot the worst-case gain of the following system:

sys = s2 + 3s
s2 + 2s + a
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The uncertain parameter a = 2 ± 1.

a = ureal('a',2);
usys = tf([1 3 0],[1 2 a]);
wcsigma(usys)

The Worst perturbation curve identifies the single response within the uncertainty that yields the
highest gain at any frequency. This perturbation corresponds to the wcu output of wcgain.

The Worst-case gain curves show the lower and upper bounds on the worst-case gain at each
frequency. For any perturbation within the specified uncertainty range, the principal gains (singular
values) of the perturbed system lie below the Worst-case gain (upper bound) curve. In other
words, this curve is the envelope produced by finding the highest gain within the uncertainty at each
frequency. For this system, the lower and upper bounds are close enough to appear identical on the
plot. (See wcgain for more information about these bounds.)

Focus the plot on the region between 0.1 and 10 rad/s.

w = {0.1 10};
wcsigma(usys,w)
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Examine the effect on the worst-case response of increasing the uncertainty range. To do this without
changing the uncertainty specified in usys, use the ULevel option of wcOptions. This option scales
the normalized uncertainty by the factor you specify. For example, examine the worst-case response a
50% greater uncertainty range.

opts = wcOptions('ULevel',1.5);
wcsigma(usys,w,opts)
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The plot shows that increasing the uncertainty range substantially increases the worst-case gain at
low frequencies.

Input Arguments
usys — Dynamic system with uncertainty
uss | ufrd | genss | genfrd

Dynamic system with uncertainty, specified as a uss, ufrd, genss, or genfrd model that contains
uncertain elements.

For genss or genfrd models, wcsigma uses the current value of any tunable blocks and folds them
into the known (not uncertain) part of the model.

w — Frequencies
{wmin,wmax} | vector

Frequencies at which to plot worst-case gains, specified as the cell array {wmin,wmax} or as a vector
of frequency values.

• If w is a cell array of the form {wmin,wmax}, then the function plots the worst-case gains at
frequencies ranging between wmin and wmax.

• If w is a vector of frequencies, then the function plots the worst-case gains at each specified
frequency. For example, use logspace to generate a row vector with logarithmically spaced
frequency values.
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Specify frequencies in units of rad/TimeUnit, where TimeUnit is the TimeUnit property of the
model.

opts — Options for worst-case gain computation
wcOptions object

Options for worst-case computation, specified as an object you create with wcOptions. Setting
certain options for mussv can improve the results of the worst-case calculation. See wcOptions for
more information.
Example: wcOptions('ULevel',2,'MussvOptions','m3')

Algorithms
wcsigma uses wcgain to compute the worst-case gains. Use the opts argument to set options for
the wcgain algorithm.

wcsigma uses usample to compute the Sampled Uncertainty curves.

Compatibility Considerations
wcsigma is not recommended
Not recommended starting in R2020a

Beginning in R2020a, wcsigma is not recommended. Use wcsigmaplot instead.

See Also
wcsigmaplot | wcOptions | wcgain | sigma | uss

Topics
“Robustness and Worst-Case Analysis”

Introduced in R2016b
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wcsigmaplot
Plot worst-case gain of uncertain system

Syntax
wcsigmaplot(usys)
wcsigmaplot(usys,w)
wcsigmaplot( ___ ,opts)

Description
wcsigmaplot(usys) plots the nominal and worst-case gains of the uncertain system usys as a
function of frequency. For multi-input, multi-output (MIMO) systems, gain refers to the largest
singular value of the frequency response matrix. (See sigma for more information about singular
values.) The plot includes:

• Nominal — Nominal gain of usys.
• Worst perturbation — The response falling within the uncertainty of usys that has the highest

peak gain. This curve corresponds to the wcu output argument of wcgain.
• Worst-case gain (lower bound) — The lowest possible worst-case gain at each frequency.
• Worst-case gain (upper bound) — The highest possible gain within the uncertainty at each

frequency. This curve represents the envelope produced by finding the highest possible gain at
each frequency.

• Sampled Uncertainty — Responses randomly sampled from usys.

wcsigmaplot(usys,w) focuses the plot on the frequencies specified by w.

• If w is a cell array of the form {wmin,wmax}, then wcsigmaplot plots the worst-case gains in the
range {wmin,wmax}.

• If w is an array of frequencies, then wcsigmaplot plots the worst-case gains at each frequency in
the array.

wcsigmaplot( ___ ,opts) specifies additional options for the computation. Use wcOptions to
create opts.

Examples

Plot Worst-Case Gain of Uncertain System

Plot the worst-case gain of the following system:

sys = s2 + 3s
s2 + 2s + a

.

The uncertain parameter a = 2 ± 1.
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a = ureal('a',2);
usys = tf([1 3 0],[1 2 a]);
wcsigmaplot(usys)

The Worst perturbation curve identifies the single response within the uncertainty that yields the
highest gain at any frequency. This perturbation corresponds to the wcu output of wcgain.

The Worst-case gain curves show the lower and upper bounds on the worst-case gain at each
frequency. For any perturbation within the specified uncertainty range, the principal gains (singular
values) of the perturbed system lie below the Worst-case gain (upper bound) curve. In other
words, this curve is the envelope produced by finding the highest gain within the uncertainty at each
frequency. For this system, the lower and upper bounds are close enough to appear identical on the
plot. (See wcgain for more information about these bounds.)

Focus the plot on the region between 0.1 and 10 rad/s.

w = {0.1 10};
wcsigmaplot(usys,w)
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Examine the effect on the worst-case response of increasing the uncertainty range. To do this without
changing the uncertainty specified in usys, use the ULevel option of wcOptions. This option scales
the normalized uncertainty by the factor you specify. For example, examine the worst-case response a
50% greater uncertainty range.

opts = wcOptions('ULevel',1.5);
wcsigmaplot(usys,w,opts)
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The plot shows that increasing the uncertainty range substantially increases the worst-case gain at
low frequencies.

Input Arguments
usys — Dynamic system with uncertainty
uss | ufrd | genss | genfrd

Dynamic system with uncertainty, specified as a uss, ufrd, genss, or genfrd model that contains
uncertain elements.

For genss or genfrd models, wcsigmaplot uses the current value of any tunable blocks and folds
them into the known (not uncertain) part of the model.

w — Frequencies
{wmin,wmax} | vector

Frequencies at which to plot worst-case gains, specified as the cell array {wmin,wmax} or as a vector
of frequency values.

• If w is a cell array of the form {wmin,wmax}, then the function plots the worst-case gains at
frequencies ranging between wmin and wmax.

• If w is a vector of frequencies, then the function plots the worst-case gains at each specified
frequency. For example, use logspace to generate a row vector with logarithmically spaced
frequency values.
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Specify frequencies in units of rad/TimeUnit, where TimeUnit is the TimeUnit property of the
model.

opts — Options for worst-case gain computation
wcOptions object

Options for worst-case computation, specified as an object you create with wcOptions. Setting
certain options for mussv can improve the results of the worst-case calculation. See wcOptions for
more information.
Example: wcOptions('ULevel',2,'MussvOptions','m3')

Algorithms
wcsigmaplot uses wcgain to compute the worst-case gains. Use the opts argument to set options
for the wcgain algorithm.

wcsigmaplot uses usample to compute the Sampled Uncertainty curves.

See Also
wcOptions | wcgain | sigma | uss

Topics
“Robustness and Worst-Case Analysis”

Introduced in R2016b
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MultiPlot Graph
Plot results of multiple simulations
Library: Robust Control Toolbox

Description
The MultiPlot Graph block displays signals in a MATLAB figure. Each time you simulate the model,
the block adds a new line to the figure, cycling through seven colors. This block allows you to view
the results of multiple simulations on a single MATLAB figure. For instance, you can use the block
with the Uncertain State Space block to visualize Monte Carlo and worst-case simulation time
responses.

The input signal can be scalar or vector. If the input signal is a vector, then the block plots each
component of the vector in separate axes.

To export the visible plot data to the MATLAB workspace, in the figure window, click . The block
exports the data in a variable having the name you specify in the Variable for Export to Workspace
parameter.

To clear the data from all axes, in the figure window, click .

Ports
Input

Port_1(y) — Signal to plot
scalar | vector

Providing a scalar signal creates one plot. To create multiple subplots, combine the signals you want
to plot into a vector signal, using blocks such as:

• Mux
• Vector Concatenate
• Bus Creator

Parameters
t-min — X-axis lower limit
0 (default) | scalar | vector

The t-min and t-max parameters set the x-axis limits. To set different lower limits for each subplot,
set t-min to a vector of the same dimensions as the input signal.
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Programmatic Use
Block Parameter: tmin
Type: scalar, vector
Default: 0

t-max — X-axis upper limit
20 (default) | scalar | vector

The t-min and t-max parameters set the x-axis limits. To set different upper limits for each subplot,
set t-max to a vector of the same dimensions as the input signal.

Programmatic Use
Block Parameter: tmax
Type: scalar, vector
Default: 20

y-min — Y-axis lower limit
–1 (default) | scalar | vector

The y-min and y-max parameters set the y-axis limits. To set different lower limits for each subplot,
set y-min to a vector of the same dimensions as the input signal.

Programmatic Use
Block Parameter: ymin
Type: scalar, vector
Default: –1

y-max — Y-axis upper limit
1 (default) | scalar | vector

The y-min and y-max parameters set the y-axis limits. To set different upper limits for each subplot,
set y-max to a vector of the same dimensions as the input signal.

Programmatic Use
Block Parameter: ymax
Type: scalar, vector
Default: 1

Sample time — Block sample time
–1 (default) | positive scalar

Specify the sample time of the block. A sample time of –1 means that the block inherits its sample
time from the upstream blocks.

Programmatic Use
Block Parameter: Tsamp
Type: scalar
Default: –1

Title — Figure title
empty (default) | character vector

Specify the title of the MATLAB figure that the block generates.

Programmatic Use
Block Parameter: titleString
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Type: character vector
Default: ''

Variable for Export to Workspace — Variable name for saving plot data
multisimout (default) | character vector

To export the plot data to the MATLAB workspace, in the figure window, click . The block exports
the data to a variable with the name you specify in this parameters. The data is saved in a struct
array, following the behavior of a To Workspace block with its Save format parameter set to
Structure With Time.

Programmatic Use
Block Parameter: vnamesave
Type: character vector
Default: ''

See Also
Uncertain State Space

Introduced in R2007a
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Uncertain State Space
Simulate uncertain system in Simulink
Library: Robust Control Toolbox

Description
The Uncertain State Space block lets you model parametric and dynamic uncertainty in Simulink. The
block accepts uncertain state space (uss) models or any model that can be converted to uss, such as
umat, ureal, umargin, and ultidyn objects.

Ports
Input

Port_1(In1) — Input signal
scalar | vector

For a single-input uncertain system, the input signal is a scalar. For multiple-input systems, combine
the system inputs into a vector signal, using blocks such as:

• Mux
• Vector Concatenate
• Bus Creator

Output

Port_1(Out1) — Output signal
scalar | vector

For a single-output uncertain system, the output signal is a scalar. For multiple-output systems, the
output signal is a vector. To split system outputs into scalar signals, use blocks such as:

• Demux
• Bus Selector

Parameters
Uncertain system variable (uss) — Uncertain system
ss(ureal('a',-5),5,1,1) (default) | uss model | model or element that can be converted to uss

Specify the uncertain model to simulate as uss object using one of the following:

• Function or expression that evaluates to an uss object. For example:

• ss(ureal('a',-5),5,1,1)
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• wt*input_unc, where input_unc is an ultidyn object and wt and input_unc are defined
in the MATLAB workspace.

• Variable defined in the MATLAB workspace. For example, unc_sys, where you define unc_sys =
ss(ureal('a',-5),5,1,1) in the workspace.

• Model of any type that can be converted to a uss model object. For example:

• LTI models (tf, zpk and ss)
• Uncertain matrix (umat)
• Uncertain real parameters (ureal)
• Uncertain dynamics (ultidyn, umargin)

When the block is in a model with synchronous state control (see the State Control block), you must
specify a discrete-time model.
Programmatic Use
Block Parameter: USystem
Type: uss model, model that can be converted to uss
Default: ss(ureal('a',-5),5,1,1)

Uncertainty value (struct or [] to use nominal value) — Values to substitute for
uncertain variables
[] (default) | structure

The uss model that you specify in the Uncertain system variable (uss) parameter depends on
uncertain variables such as ureal or ultidyn uncertainty. To simulate or linearize the uncertain
model, the block must replace these uncertain variables with fixed values. Use this parameter to
specify those fixed values for the next simulation or linearization. Use a structure whose fields are the
names of the uncertain elements in the uss model and whose values are the substitute values of
those elements. For example:

• If the uss model has uncertain real (ureal) parameters with names a and b, then setting this
parameter to struct('a',1,'b',3.5) replaces a with 1 b with 3.5.

• If the uss model has dynamic uncertainty represented by a ultidyn element named 'delta',
then setting this parameter to struct('delta',tf(1,[1 1])) replaces the uncertain
dynamics with the specified transfer function.

To generate randomized values of uncertain variables for Monte Carlo simulation, use ufind and
usample, as shown in the examples “Simulate Uncertain Model at Sampled Parameter Values” and
“Vary Uncertain Values Across Multiple Uncertain Blocks”.

The default value [] sets all uncertain elements to their nominal values. Note that the nominal value
of ultidyn uncertain dynamics is always 0, and the nominal value of umargin gain and phase
uncertainty is always 1.
Programmatic Use
Block Parameter: UValue
Type: structure
Default: []

Initial states (nominal dynamics) — Initial state values of nominal system
[] (default) | vector

If the nominal value of the uncertain system you specify in the Uncertain system variable (uss)
parameter has dynamics, you can use this parameter to specify initial values for those states. Specify

2 Blocks

2-6



the initial states as a vector having as many entries as there are states. The default value of []
initializes all states to 0.

Programmatic Use
Block Parameter: X0
Type: scalar, vector
Default: []

Initial states (uncertain dynamics) — Initial state values for uncertain dynamics
[] | vector

If the uncertain system contains some dynamic uncertainty (ultidyn or umargin), then you can use
the Uncertainty value (struct or [] to use nominal value) parameter to replace that uncertainty
with specific dynamics for simulation. Use the Initial states (uncertain dynamics) parameter to
specify the initial state of these dynamics. Specify the initial states as a vector having as many entries
as there are states. The default value of [] initializes all states to 0.

Programmatic Use
Block Parameter: uX0
Type: scalar, vector
Default: []

See Also
Blocks
MultiPlot Graph

Functions
ufind | usample | ulinearize | uss | umat | ureal | ultidyn | umargin

Topics
“Simulate Uncertainty Effects”
“Compute Uncertain State-Space Models from Simulink Models”
“Robustness Analysis in Simulink”
“Linearization of Simulink Models with Uncertainty”

Introduced in R2009b
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USS System
(Not recommended) Import uncertain systems into Simulink

Compatibility

Note USS System block is not recommended. Use Uncertain State Space block instead.

Description
The USS System block accepts USS and UMAT containing ureal and ultidyn uncertain objects, as
well as ureal and ultidyn objects. An instance of the uncertain system is used in the simulation or
linearization. Internally, USS models are converted to their state space equivalent for evaluation.

Parameters
USS system variable

The uncertain object (USS, UMAT, ureal, or ultidyn) is entered in the USS system variable.

Initial states (nominal dynamics)

If the nominal value for the USS system variable has states, then the initial condition for these states
is entered in Initial states (nominal dynamics).

Uncertainty value

The values for the uncertain elements are controlled by the Uncertainty value menu. If Nominal
is selected, then the nominal value of the uncertain object is used. If you select User defined, then
you must enter a MATLAB structure in the User-defined uncertainty (struct) dialog box.
The field names of the structure should correspond to the names of the uncertain atoms within the
USS system variable, while the values of the fields are the values used for the uncertain objects
(using the command usubs). If some of these values are SS objects, then these states are referred to
as uncertainty states.

The order of the uncertainty states is determined by the order of atoms in the Uncertainty property of
the USS system variable. The state dimension is determined by the actual data in the User-defined
uncertainty structure. Any extra fields in the User-defined uncertainty structure are
ignored.

User-defined uncertainty (struc)

If User defined is selected from the Uncertainty value pop-up menu, then the structure data
entered in User-defined uncertainty (struct) must contain fields corresponding to every
uncertain atom of the USS system variable. Extra fields are ignored. usimsamp generates a random
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instance of each atom in a Simulink model. It returns a structure, suitable for entry in User-
defined uncertainty (struct).

Initial states (uncertain dynamics)

The initial condition for the uncertainty states is entered in Initial states (uncertain
dynamics).

Introduced in R2007a
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